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Abstract

This thesis investigates the informational efficiency of decentralized prediction markets by developing
and evaluating probabilistic time series models tailored to the unique structural features of these
platforms. Using high-frequency data from Polymarket, the study introduces a novel Groupwise
Beta Hidden Markov Model (Beta-HMM) that jointly models interdependent contracts within each
market. The model captures latent regime dynamics—such as speculative trading and convergence
behavior—while accommodating the bounded and mutually exclusive nature of prediction market
prices.

Empirical results demonstrate that the Groupwise Beta-HMM substantially outperforms both a
naive benchmark and a standard Beta-HMM, achieving 89.3% classification accuracy and an av-
erage per-trade profit of $0.101. A convergence time metric is introduced to measure belief stabi-
lization, revealing asymmetries in how quickly markets resolve to “Yes” versus “No,” with “No”
markets converging significantly faster. The paper further explores the practical constraints of im-
plementing such a strategy, including transaction costs, real-time data limitations, and regulatory
considerations.

Overall, this work contributes to the literature by proposing a statistically coherent and economically
interpretable modeling framework for prediction markets. It highlights the potential of structured
probabilistic methods to enhance real-time decision-making and belief aggregation in alternative
financial ecosystems.



Contents

1 Preliminaries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Prediction Markets and their Importance . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Data Collection and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Data Features and Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Model Task and Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Convergence Time Analysis in Prediction Markets 6

2.1 Motivation and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Empirical Analysis of Market Convergence . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Distribution of Convergence Times . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Stratification by Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Tolerance Sensitivity of Convergence Time . . . . . . . . . . . . . . . . . . . 10

2.3 Relevance to the Modeling Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Relevance to the Modeling Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Fundamental Concepts Underpinning the Hidden MArkov Model 12

3.1 Markov Processes and Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Short-Term and Long-Term Dynamics of Markov Chains . . . . . . . . . . . . . . . . 13

3.3 Convergence to the Stationary Distribution and Mixing Time . . . . . . . . . . . . . 13

3.4 Relevance to the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Beta Hidden Markov Model 15

4.1 Model Components and Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 State Transition Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ii



4.1.2 Initial State Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.3 Emission Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Advantages of the Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Parameter Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Expectation-Maximization Algorithm (EM) for Parameter Estimation . . . . . . . . 19

4.4.1 Expectation Step (E-Step) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4.2 Maximization Step (M-Step) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Inference and Prediction using the Viterbi Algorithm . . . . . . . . . . . . . . . . . . 21

4.6 Extracting Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.7 Implementation in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 The Groupwise Beta Hidden Markov Model 24

5.1 Data Adjustments and Empirical Motivation for Groupwise Modeling . . . . . . . . 24

5.2 Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Groupwise Emissions and Masked Training in Heterogeneous Prediction Markets . . 26

5.4 Masked Viterbi Decoding for Structured Prediction . . . . . . . . . . . . . . . . . . . 28

5.5 Comparison to the Standard Beta-Hidden Markov Model . . . . . . . . . . . . . . . 28

6 Performance Evaluation 30

6.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Conclusion 32

7.1 Economic Implications and Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Outlook and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.4 Appendices: Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4.1 Naive Benchmark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4.2 Basic Beta Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4.3 Groupwise Beta Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . 41



Chapter 1

Preliminaries

1.1 Introduction

Prediction markets have emerged as powerful tools for forecasting future events by aggregating dis-
persed information through financial incentives. By allowing users to buy and sell contracts tied
to event outcomes, these markets transform individual beliefs into real-time probability estimates
[47, 2]. While prior research has shown that such markets often yield accurate forecasts [4], their
informational efficiency—particularly on decentralized platforms with minimal institutional partic-
ipation—remains an open empirical question.

This paper investigates the informational and economic efficiency of decentralized prediction markets
through the lens of time series modeling. We focus on Polymarket, a blockchain-based platform
where users speculate on a diverse range of binary and multi-outcome events. Unlike traditional
financial markets, Polymarket features minimal market-making infrastructure, heterogeneous trader
behavior, and limited liquidity—conditions that challenge classical assumptions of rational pricing
and efficient aggregation [48].

To analyze these markets, this paper develop and evaluate a family of Hidden Markov Models
(HMMs) adapted for the unique characteristics of prediction market data: bounded price dynamics,
regime-switching behavior, and structural heterogeneity across contracts. Building on the Beta-
HMM framework [43], the researcher introduce a novel Groupwise Beta-HMM that jointly models
related contracts within a market using a masked emission structure, allowing for pooled training
across markets with different outcome sets [5, 32].

In addition to predictive classification, a convergence time metric is introduced to assess how quickly
markets stabilize around correct outcomes. The analysis highlights both the promise and limitations
of statistical arbitrage in prediction markets and suggests structural asymmetries in how “Yes” versus
“No” outcomes are priced over time. Overall, the paper contributes to the growing literature on
forecasting, belief dynamics, and information aggregation in decentralized financial ecosystems.
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1.2 Prediction Markets and their Importance

Prediction markets are speculative platforms where participants trade contracts whose payouts
depend on the outcome of future events. Each contract is tied to a binary proposition—such as
“Will candidate X win the election?”—and is priced between 0 and 1, reflecting the market’s implied
probability of the event occurring. If the event occurs, the contract pays out 1; otherwise, it pays
0. As a result, contract prices can be interpreted as real-time forecasts of collective belief, shaped
by the aggregated information and incentives of market participants [47].

Over the past decade, prediction markets have gained considerable traction, particularly with the
advent of decentralized, blockchain-based platforms such as Polymarket. These platforms have de-
mocratized access by lowering barriers to entry, allowing retail users to participate in forecasting
events across politics, finance, science, and culture. As of 2024, several prediction markets rou-
tinely surpass $10 million in trading volume, indicating substantial user engagement and increasing
relevance in the broader forecasting landscape [38, 4].

What makes prediction markets particularly compelling for empirical study is their structural nov-
elty. Unlike traditional financial markets dominated by institutional investors, prediction markets
typically lack professional market makers and are instead populated by retail traders with varying
levels of expertise. This composition raises important questions about the efficiency of such markets.
Do they aggregate information effectively? Are prices consistent with rational expectations? Or are
there persistent inefficiencies that a sophisticated trader or model could exploit [48, 45]?

From a financial perspective, prediction markets are also notable for their near-zero correlation
with traditional asset classes. This characteristic has taken on increased significance in today’s
volatile economic environment, where equity and fixed-income markets face heightened uncertainty
due to inflation, monetary tightening, and geopolitical instability. In such conditions, investors seek
alternative assets with uncorrelated payoffs to diversify risk and enhance return potential [18]. The
unique information dynamics and idiosyncratic risk structure of prediction markets position them
as an attractive domain for both academic research and speculative trading strategies.

In sum, prediction markets offer a rich testbed for studying market efficiency, belief formation, and
alternative investment opportunities. Their growth, accessibility, and decoupling from traditional
financial markets underscore their importance as both a practical tool for forecasting and a subject
of rigorous empirical analysis.

1.3 Data Collection and Preprocessing

The dataset is sourced from Polymarket [38], a blockchain-based prediction market platform. Data
was obtained by filtering for resolved bets, selecting only markets with a total trading volume ex-
ceeding $10 million. Individual CSV files were downloadable from the platform; however, historical
data was only retained for three months at an hourly frequency. Consequently, at each point of
download—November 3rd, 2024, and February 17th, 2025—the available data extended back ap-
proximately three months from the respective retrieval date. This dual collection approach ensured
broader market coverage while mitigating the limitations imposed by the platform’s short data
retention policy.

To provide a descriptive overview of the dataset, Table 1.1 summarizes average statistics across 1366



resolved markets. On average, markets contain approximately 487 hourly observations, reflecting the
three-month historical window per the data retention policy. The mean and median market-implied
probabilities are closely aligned at 0.2341 and 0.2242, respectively, suggesting a mild skew toward
lower probability outcomes. The variance and standard deviation—0.0098 and 0.0635—indicate
moderate dispersion around the mean, consistent with the inherent volatility of prediction market
prices prior to resolution. Notably, while the minimum and maximum prices span nearly the entire
probability range [0,1], most contracts cluster around lower probabilities, aligning with the observed
imbalance between outcome resolutions: 316 contracts resolved to ”Yes” compared to 1050 contracts
resolving to ”No.” The average starting price of 0.2969 and ending price of 0.2323 further reflect
the typical decay in price as markets resolve toward ”No,” supporting the need for a modeling
framework that accounts for dynamic belief updating and convergence behavior.

Average Statistic Value

Mean 0.2341
Median 0.2242
Variance 0.0098
Standard Deviation 0.0635
Minimum 0.0005
Maximum 0.9995
Number of Observations 486.99
Starting Value 0.2969
Ending Value 0.2323
Number of Outcome ”Yes” 316
Number of Outcome ”No” 1050

Table 1.1: Average Summary Statistics Across 1366 Different Markets

The preprocessing of the dataset follows a structured pipeline to ensure the data is clean, consistent,
and suitable for time series analysis. The raw data consists of multiple CSV files, each corresponding
to a different prediction market. To integrate these sources into a unified dataset, all files are loaded,
and their timestamps are standardized by converting the ”Date (UTC)” column into a datetime
index. This ensures that all market data aligns temporally. During this merging process, columns
are renamed with their respective market names to prevent naming conflicts, and duplicate indices
are removed to maintain data integrity. The merging operation uses an outer join, ensuring that all
data points are preserved while retaining the structure necessary for cross-market comparisons [37].

Once merged, the dataset is resampled to hourly intervals. This step is crucial for enforcing a uniform
temporal structure, which is a prerequisite for many time series modeling techniques [34]. Without
consistent spacing, models could suffer from irregular gaps that distort temporal dependencies.
Missing timestamps are introduced as necessary, and rather than interpolating these values, they
are explicitly labeled as ”N/A” to prevent artificial bias. This approach is particularly important
given the nature of prediction markets, where inactivity at certain time points can be meaningful
rather than indicative of data loss [8].

To facilitate downstream analysis, a categorical outcome variable (outcome yes) is introduced to
encode whether an event ultimately occurred. This variable is determined based on the final recorded
price of each market. If the last observed price exceeds 0.9, the outcome is assigned a value of 1,
indicating that the event occurred. Conversely, if the final price is below 0.1, the outcome is assigned
0, indicating that the event did not happen. Cases where the final price falls between these thresholds



remain unclassified, as their outcome is ambiguous. This classification is appended as a new row at
the top of the dataset, establishing a reference point for supervised learning and predictive modeling
applications [43].

Further refinements are applied to eliminate excessive noise in the dataset. Inactive markets often
contain long sequences of 0s or 1s at the beginning of their time series, contributing little to predictive
modeling. To address this, early observations are truncated while preserving the last 50 data
points before the first significant price movement. This prevents the dataset from being dominated
by irrelevant periods of inactivity while ensuring that meaningful historical context is retained.
Additionally, the timestamp column is replaced with an observation number, allowing for more
efficient numerical processing in models that do not require explicit date indexing [5]. To finalize
the preprocessing, all empty cells are removed, and remaining values are shifted up to maintain a
compact and computationally efficient dataset.

By the end of this process, the dataset is fully structured for analysis, free from duplicate timestamps,
standardized to hourly intervals, and labeled for outcome classification. These steps ensure that the
data is both clean and meaningful, preserving its integrity while making it suitable for advanced
time series modeling techniques.

1.4 Data Features and Model Selection

The unique characteristics of prediction market data inform the choice of modeling framework. The
observed price series exhibit several structural properties that must be accounted for in order to
build an effective forecasting model.

First, all observations are bounded between 0 and 1, as they represent market-implied probabilities of
binary outcomes. Moreover, as the resolution of the event approaches, these prices tend to converge
sharply to either 0 or 1, reflecting increasing certainty in the eventual outcome. This behavior is
comparable to the pricing of near-expiry binary options, where prices asymptotically approach their
payoff values as uncertainty diminishes over time [25].

Second, the data exhibit distinct regime-switching behavior. During the early and mid-phases of
trading, market prices often follow a pattern resembling a noisy random walk—driven by changing
sentiment, partial information, and speculative activity. Once sufficient information accumulates or
a decisive signal emerges, prices rapidly transition to a convergence phase, steadily approaching the
final payout value of 0 or 1. These two regimes—general trading and convergence—are well captured
by a Hidden Markov Model (HMM), which explicitly models unobserved states that evolve over time
[39]. At a minimum, the model requires two hidden states: one representing the general trading
phase and another capturing convergence behavior, which may itself be decomposed into convergence
to ”Yes” (1) and convergence to ”No” (0).

Third, many prediction markets contain groups of related contracts that are logically interdependent.
For example, in an election market, separate contracts may exist for each candidate, yet only
one outcome can ultimately occur. This introduces structural correlations—often strong negative
correlations—between contract prices within the same market. To account for such groupwise
dependencies, an extension of the standard HMM is required. Groupwise or coupled HMMs, which
allow for coordinated dynamics across multiple related time series, are better suited to capturing
the joint evolution of prices in interdependent markets [21, 7].



In light of these data features, a Beta-HMM with multiple hidden states is selected to model the
bounded and regime-switching nature of the time series [43]. Extensions of this model to groupwise
settings are discussed in later sections to better reflect correlated market structures.

1.5 Model Task and Benchmarking

The primary task of the model is to predict the eventual outcome of a binary prediction market
before the market is resolved. Each market resolves to either ”Yes” (1) or ”No” (0), and the profit
is calculated as the difference between the final payoff (which is always $1 for a correct position)
and the price at which the position was entered. This framing allows the model to be evaluated not
only by classification accuracy but also by its economic performance in a trading context.

The trading strategy employed is a long-only approach. This means the model only takes long
positions—either buying ”Yes” or buying ”No”—and does not engage in short-selling or borrowing.
This design choice avoids borrowing costs and reflects the structure of most prediction markets,
where reciprocal contracts exist: if a ”Yes” contract is available for purchase, a ”No” contract is
also typically available, both priced to sum to approximately $1. As such, taking a long-only position
on either side suffices to represent both sides of the market without requiring additional complexity.

To evaluate the performance of the model, it is compared against a simple naive benchmark. The
benchmark strategy operates without any predictive modeling. Instead, it places a bet exactly eight
hours before market closure by taking a long position on whichever side—”Yes” or ”No”—has the
higher observed market price at that time. This approach serves as a baseline to assess whether the
Beta-HMM provides meaningful improvements in both predictive accuracy and trading profitability
over a non-model-driven heuristic.



Chapter 2

Convergence Time Analysis in
Prediction Markets

2.1 Motivation and Definition

Prediction markets display distinct temporal patterns in the evolution of prices. In the early phases
of a market, contract prices fluctuate significantly, driven by speculation, information asymmetries,
and noise. As the event approaches resolution and uncertainty decreases, these prices tend to stabi-
lize around the final realized outcome. This stabilization behavior—referred to as convergence—is a
key empirical feature of functioning prediction markets, as it reflects the market’s ability to efficiently
aggregate information over time [47, 4].

Figure 2.1 presents a representative example from Polymarket: a multi-outcome market forecasting
the next UK Conservative Party leader. Initially, contract prices are dispersed and volatile. Over
time, however, one contract (orange) begins to rise steadily, while others decline, indicating increas-
ing market consensus. By the end of the series, the dominant contract approaches a price of one,
while others fall toward zero—highlighting a clear instance of convergence.
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Figure 2.1: Example of price convergence in a multi-outcome prediction market (Polymarket: next
UK Conservative leader).

To quantify this phenomenon, the forward convergence time statistic τε is defined. Given a
market-implied probability sequence {pt}Tt=1 and a realized binary outcome y ∈ {0, 1}, the conver-
gence time is defined as:

τε = min {t ∈ {1, . . . , T} : |ps − y| < ε for all s ≥ t}

Here, ε ∈ (0, 1) specifies the width of the convergence band, such as 0.10. The statistic τε captures
the earliest point from which the market remains consistently close to the correct outcome.

Convergence time is a useful metric in this context for three primary reasons. First, it enables
rigorous cross-market comparisons of informational efficiency by measuring how quickly beliefs sta-
bilize. Second, the existence of sharp transitions from noisy trading to stable convergence motivates
the adoption of regime-switching models—such as Hidden Markov Models—that can capture latent
state dynamics [8]. Third, convergence timing has practical trading implications: early convergence
may enable profitable prediction-based positions before resolution.

2.2 Empirical Analysis of Market Convergence

An empirical investigation of convergence behavior in decentralized prediction markets is conducted
by evaluating the forward convergence time statistic τε across a panel of resolved binary event
markets. The convergence metric τε is computed for three tolerance levels ε ∈ {0.05, 0.10, 0.15},
and the distributional behavior is examined via kernel density estimation (KDE) to visualize the
distribution of τε across resolved markets.



Figure 2.2: Overlayed KDE plots for different Taus

2.2.1 Distribution of Convergence Times

Figure 2.2 presents the KDEs of τε across all markets for three tolerance levels ε ∈ {0.05, 0.10, 0.15}.
Across all thresholds, the distribution exhibits a long right tail and a sharp mode near zero, suggest-
ing that most markets converge very early, but a non-negligible subset exhibit delayed or unstable
convergence.

As expected, the average convergence time declines as ε increases: mean values of 255.7, 211.4,
and 186.9 for ε = 0.05, 0.10, 0.15, respectively. This inverse relationship reflects the definition of
τε: wider tolerance bands allow earlier entry into the stability region. The interquartile range also
shrinks with increasing ε, indicating tighter dispersion and faster convergence.

ε Mean Median Std Dev Var 25% 75%

0.05 255.66 87.00 387.17 149,901.65 1.00 329.50
0.10 211.42 42.00 361.25 130,498.44 0.00 242.50
0.15 186.85 21.00 346.17 119,834.09 0.00 172.50

Table 2.1: Descriptive Statistics for τε Across Tolerance Levels



2.2.2 Stratification by Outcome

To assess whether convergence dynamics differ by resolution outcome, this paper stratifies τ0.10
values into markets that resolved to “Yes” (y = 1) and those that resolved to “No” (y = 0).
Figure 2.3 overlays the KDEs of the two subgroups.

Figure 2.3: KDE of τ0.10 Stratified by Outcome

The distributions diverge markedly. Markets that resolved to “Yes” exhibit significantly longer
convergence times on average (mean: 371.8 vs. 171.3), with a broader spread (std dev: 438.6 vs.
327.1). Moreover, the median τ0.10 for “No” markets is just 7, compared to 167.5 for “Yes,” indi-
cating that “No” markets converge almost immediately in many cases. This asymmetry may reflect
inherent biases or risk-aversion in market participation, where the burden of proof—or information
revelation—is higher for “Yes” outcomes.

Outcome Mean Median Std Dev Var 25% 75%

Yes (1) 371.77 167.50 438.57 192,342.68 51.25 557.00
No (0) 171.31 7.00 327.09 106,985.06 0.00 167.00

Table 2.2: Descriptive Statistics for τ0.10 by Outcome



2.2.3 Tolerance Sensitivity of Convergence Time

Figure 2.4 displays the mean convergence time τε as a function of the tolerance level ε, separately
for the aggregate sample and for markets resolving to “Yes” and “No.” Across all three groups,
the empirical relationship is strictly decreasing: as the tolerance band widens from ε = 0.01 to
ε = 0.20, the mean τε falls monotonically. This behavior is a direct consequence of the definition
in Equation (??), since larger values of ε impose a less stringent requirement for “locking in” the
series within the neighborhood of the realized outcome.

Figure 2.4: Tau vs Epsilon

In the aggregate series (black curve), the decline in mean τε is steepest at small tolerances, dropping
from approximately 365 observation-steps at ε = 0.01 to around 230 steps by ε = 0.05, before
gradually flattening to roughly 168 steps at ε = 0.20. This convex shape indicates diminishing
returns to increasing ε: initial relaxations of the tolerance yield large gains in convergence speed,
whereas further widening produces smaller marginal effects.

The stratified curves reveal a pronounced asymmetry between outcome regimes. Markets resolving
to “No” (blue curve) exhibit systematically faster convergence than those resolving to “Yes” (green
curve) at every tolerance level. For instance, at ε = 0.05, the mean τ0.05 for “No” markets is
approximately 218 steps, compared to about 402 steps for “Yes” markets. Even at the largest
tolerance of ε = 0.20, the “No” curve attains an average τ0.20 ≈ 123, whereas the “Yes” market still
requires nearly 342 steps on average. This persistent gap suggests that baseline (negative) outcomes
are assimilated more quickly by the market, potentially reflecting participant risk-aversion or the
relative ease of aggregating disconfirming signals.



Overall, the tolerance-sensitivity analysis underscores two key insights. First, the choice of ε criti-
cally shapes the measured convergence speed, with small tolerances producing markedly slower τε
estimates. Second, there exists a robust structural asymmetry in belief updating: markets coalesce
around “No” outcomes substantially faster than around “Yes,” even when evaluated under identical
tolerance criteria. These findings highlight both methodological considerations for selecting ε in em-
pirical studies of informational efficiency and substantive implications for the dynamics of market
belief formation across different event polarities.

2.3 Relevance to the Modeling Task

2.4 Relevance to the Modeling Task

This chapter investigated how quickly prediction markets stabilize around correct outcomes using
a forward convergence time statistic, τε. Empirical analysis across a large panel of resolved binary
markets revealed several robust patterns. Most notably, the distribution of convergence times is
heavily right-skewed: while many markets converge early, a significant minority remain volatile
until very late. Moreover, convergence occurs faster and more decisively in markets resolving to
“No” than in those resolving to “Yes,” suggesting asymmetries in how evidence is incorporated
depending on the polarity of the outcome [4, 47].

These results are more than descriptive. The observed patterns of sudden stabilization, especially
when preceded by extended speculative periods, strongly suggest the presence of underlying latent
regimes. Such regimes are not directly observable from price data alone but manifest as qualitative
shifts in price behavior—from noisy fluctuations to sustained directional movement. This motivates
the use of probabilistic models with unobserved state variables that can infer and characterize these
hidden dynamics [8, 39].

In the next chapter, the Beta Hidden Markov Model (Beta-HMM) is introduced, which formalizes
this intuition. By assigning a latent state to each time point—interpretable as either speculative or
converged—the model allows us to detect convergence endogenously and exploit these signals for
predictive purposes [43, 5].



Chapter 3

Fundamental Concepts Underpinning
the Hidden MArkov Model

The Beta Hidden Markov Model (Beta-HMM) extends the classical Hidden Markov Model (HMM)
framework by incorporating Beta-distributed emissions. To fully appreciate its structure, it is crucial
to first understand the foundational probabilistic models it builds upon: Markov processes and
Markov chains. These serve as the backbone for modeling sequential dependencies in time-series
data.

3.1 Markov Processes and Their Properties

A Markov process is a stochastic system where the future state depends only on the present state,
independent of the past. More formally, given a sequence of states S1, S2, . . . , ST , the Markov
property holds if:

P (St|St−1, St−2, ..., S1) = P (St|St−1). (3.1)

This assumption, often referred to as memorylessness, simplifies analysis while still capturing essen-
tial sequential dependencies [40].

A Markov chain is a discrete-time Markov process where both time and state spaces are discrete.
Let St be a sequence of random variables taking values in a finite state space {0, 1, . . . , J − 1}. The
system transitions between states according to a transition probability matrix (TPM) A, where:

Aij = P (St+1 = j|St = i). (3.2)

If the transition probabilities remain constant over time, the chain is said to be homogeneous, and
the matrix A satisfies the stochastic property [35, 28]:

J−1∑
j=0

Aij = 1, ∀i ∈ {0, . . . , J − 1}. (3.3)

12



3.2 Short-Term and Long-Term Dynamics of Markov Chains

The short-term evolution of a Markov chain is characterized by its one-step transition matrix A.
However, long-term behavior is determined by the k-step transition probabilities:

P (St+k = j|St = i) = (Ak)ij . (3.4)

This relation allows us to study the long-term equilibrium distribution of the system [14].

A state j is said to be accessible from state i (denoted i → j) if there exists some k ≥ 1 such that
(Ak)ij > 0. If both i→ j and j → i hold, the states are said to communicate (denoted i↔ j). The
Markov chain is called irreducible if all states communicate, ensuring no subset of states is isolated
[23].

3.3 Convergence to the Stationary Distribution and Mixing Time

The long-term behavior of a Markov chain is governed by its stationary distribution π, which satisfies
the fixed-point equation:

πA = π, subject to
J−1∑
i=0

πi = 1. (3.5)

This distribution represents the limiting probabilities of being in each state as t → ∞. When the
Markov chain is irreducible and aperiodic, a unique stationary distribution exists and is reached
regardless of the initial state distribution [30].

A powerful way to understand convergence is through the spectral decomposition of the transition
matrix A. Suppose A has eigenvalues λ1, λ2, . . . , λJ with corresponding eigenvectors v1, v2, . . . , vJ .
Then:

Ak = QDkQ−1, (3.6)

where Q is the matrix of eigenvectors, and Dk is a diagonal matrix with entries λki . Since stochastic
matrices always have a largest eigenvalue λ1 = 1, and all other eigenvalues satisfy |λi| < 1 for i ≥ 2,
repeated matrix multiplication leads to:

lim
k→∞

Ak = v1π
T , (3.7)

where v1 is the right eigenvector corresponding to λ1 = 1, and π is its associated left eigenvector,
normalized to sum to one [19]. This convergence guarantees that, in the long run, the system settles
into a steady-state behavior characterized by π.

The speed at which this equilibrium is reached is captured by the mixing time, defined as:

tmix(ϵ) = min

t : max
i

∑
j

|P (St = j|S0 = i)− πj | < ϵ

 . (3.8)

This quantity measures how quickly the distribution over states becomes indistinguishable from the
stationary distribution within a margin ϵ. The rate of convergence is largely determined by the
second-largest eigenvalue modulus (SLEM), given by:

ρ = max{|λ2|, |λ3|, . . . , |λJ |}. (3.9)



A smaller ρ implies faster decay of transient dynamics and quicker convergence to the stationary
distribution. This is particularly relevant in applications such as financial modeling, where rapid
inference and adaptability to new information are essential for real-time decision-making [33].

3.4 Relevance to the Framework

The theoretical properties of Markov chains—such as accessibility, stationary distributions, and
convergence behavior—form the backbone of more complex probabilistic models used in sequential
data analysis [35, 15]. In particular, the understanding of how hidden states evolve over time,
stabilize, or shift between regimes is essential when these states are not directly observed but instead
inferred from data.

This long-run structure becomes especially important when the Markov chain is embedded within a
larger modeling framework in which observations depend probabilistically on latent state dynamics
[8]. In such settings, the Markov chain governs the temporal evolution of unobserved regimes, while
the observed data provide indirect evidence about the system’s current state.

The insights gained from studying short- and long-term Markov chain dynamics—such as mixing
time, spectral properties, and steady-state behavior—directly inform the design, estimation, and
interpretation of such models [30].



Chapter 4

The Beta Hidden Markov Model

S1 S2 S3

X1 X2 X3

· · ·

· · ·

Figure 4.1: Graphical representation of a Hidden Markov Model (HMM), where hidden states St
generate observed emissions Xt.

A Hidden Markov Model (HMM) is a probabilistic model that represents a system evolving over
time through an unobservable sequence of hidden states, which influence an observable sequence of
emissions [39, 8]. The key characteristic of an HMM is that while the system undergoes Markovian
transitions between hidden states, the true states themselves remain unknown and must be inferred
from observations.

Traditionally, HMMs assume Gaussian or Poisson-distributed emissions, making them well-suited
for unbounded continuous or count-based data, respectively [5, 13]. However, in scenarios where
observed values are constrained within a fixed range, such as probabilities in the interval [0, 1], the
Gaussian assumption becomes problematic due to its support over the entire real line. In such
cases, the Beta distribution provides a more suitable alternative, leading to the formulation of the
Beta-HMM.

The Beta-HMM extends the classical HMM framework by incorporating Beta-distributed emissions,
making it particularly well-suited for modeling probabilistic outcomes such as market beliefs, pro-
portions, and probabilities of binary events [43].
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4.1 Model Components and Initialization

The Beta-HMM consists of two core sequences: a hidden state sequence St and an observable
sequence Xt, where each Xt is conditionally dependent on the hidden state St at time t. The model
follows the Markov property, ensuring that future states depend only on the current state and not
on past states [34].

A standard HMM is formally defined by three primary components: the state transition matrix A,
which encodes the probabilities of transitioning between hidden states; the initial state distribution
δ, which specifies the probability of starting in each state; and the emission probability distribution
f(Xt|St), which governs how observable data are generated conditional on the current hidden state.

4.1.1 State Transition Matrix

The state transition matrix A governs the probabilities of transitioning between the three hidden
states: general trading (S0), yes convergence (S1), and no convergence (S2). The transition
probabilities are defined as:

Aij = P (St = j | St−1 = i), (4.1)

where A is a stochastic matrix, meaning each row sums to 1:

2∑
j=0

Aij = 1, ∀i ∈ {0, 1, 2}. (4.2)

Since the transition probabilities remain constant over time, the model assumes a time-homogeneous
Markov process, ensuring consistency in sequence modeling [39].

In matrix form, the state transition matrix is:

A =

A00 A01 A02

A10 A11 A12

A20 A21 A22

 , (4.3)

where:

• A00 represents the probability of remaining in the general trading state,

• A01 and A02 denote the probabilities of transitioning from general trading to yes conver-
gence and no convergence, respectively,

• A10 and A20 capture reversions from yes convergence and no convergence back to general
trading,

• A11 and A22 are the self-transition probabilities for the absorbing states yes convergence
and no convergence,



• A12 and A21 represent cross-transitions between yes convergence and no convergence,
which are expected to be minimal in a well-behaved market.

Since A is a stochastic matrix, it satisfies:

2∑
j=0

Aij = 1, ∀i ∈ {0, 1, 2}. (4.4)

The transition matrix defines the probabilistic evolution of market phases over time. It encodes
dependencies between past and future states, playing a critical role in modeling the dynamics of
prediction market movements. The stationary distribution π, obtained as the left eigenvector sat-
isfying πA = π, provides insights into the long-run equilibrium distribution of market states, which
is useful for forecasting market trends and price behavior [39].

4.1.2 Initial State Distribution

The initial probability distribution δ describes the likelihood of starting in each state:

δi = P (S1 = i), (4.5)

with the constraint: ∑
i

δi = 1. (4.6)

4.1.3 Emission Distributions

A classical HMM assumes Gaussian emissions:

Xt|St = i ∼ N (µi, σ
2
i ) (4.7)

[5, 13]. However, Gaussian emissions are unsuitable when modeling data constrained to [0, 1], such
as implied probabilities, like in our case. Since Gaussian distributions extend over the entire real
line, they can produce infeasible values, leading to biased or invalid inferences.

To overcome this limitation, we introduce the Beta distribution as the emission distribution:

Xt|St = i ∼ Beta(αi, βi) (4.8)

[26]. The Beta probability density function (PDF) is given by:

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1, (4.9)

where B(α, β) is the Beta function, defined as:

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt. (4.10)



The Beta function is closely related to the Gamma function, which generalizes the factorial function
for noninteger values. Specifically, the Beta function can be expressed in terms of Gamma functions
as follows[1]:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
, (4.11)

where the Gamma function is defined as:

Γ(z) =

∫ ∞

0
tz−1e−tdt. (4.12)

This relationship is fundamental in many probabilistic and statistical applications, as it allows the
Beta function to be computed using well-known properties of the Gamma function. The connection
to the Gamma function also simplifies parameter estimation in Bayesian inference, as conjugate
priors involving the Beta distribution can be expressed in terms of Gamma-distributed hyperpa-
rameters [20].

By leveraging this property, we can efficiently compute the Beta distribution parameters in a Hidden
Markov Model while ensuring that emissions remain properly bounded within the interval [0, 1]. The
flexibility of the Beta distribution, combined with its connection to the Gamma function, makes it
a natural choice for modeling probability-like data in a structured sequential framework.

4.2 Advantages of the Beta Distribution

The Beta distribution offers several advantages over the Gaussian model. First, it provides bounded
support, ensuring that emissions remain within the [0, 1] range—unlike Gaussian models, which can
produce infeasible values outside this interval.

Second, the Beta distribution is highly flexible, capable of modeling a wide variety of shapes, in-
cluding uniform, unimodal, and bimodal distributions, depending on its parameters α and β.

Third, the distribution is interpretable, as its parameters can be expressed directly in terms of the
mean and variance:

µ =
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
. (4.13)

These properties make the Beta distribution particularly useful for probabilistic modeling in finance,
where observed market beliefs and probabilities naturally fall within the [0, 1] interval [43].

Empirical validation supports the use of Beta-distributed emissions. Figure 4.2 presents a histogram
of observed market probabilities overlaid with a fitted Beta distribution. Compared to a Gaussian
fit, the Beta distribution more accurately captures the skewness and bounded nature of financial
probability distributions.

By replacing Gaussian emissions with Beta-distributed emissions, the Beta-HMM extends the tra-
ditional HMM framework to handle bounded data more effectively. The choice of Beta-distributed
emissions is mathematically justified and empirically validated, making the Beta-HMM particularly
relevant for financial and probabilistic forecasting.



Figure 4.2: Histogram and Fitted Beta Distribution

4.3 Parameter Initialization

The model parameters are initialized as follows. The transition probabilities Aij are randomly
assigned and then normalized so that each row sums to one. Similarly, the initial state probabilities
δi are randomly initialized and normalized to ensure that the total probability sums to one. The Beta
distribution parameters α and β are either chosen based on prior domain knowledge or estimated
from data using the method of moments [9].

4.4 Expectation-Maximization Algorithm (EM) for Parameter Es-
timation

To estimate the parameters λ = (δ, A, α, β), the expectation-maximization (EM) algorithm is em-
ployed [12, 5]. The EM algorithm is an iterative optimization procedure that computes maximum
likelihood estimates for models involving latent variables or incomplete data. It consists of two
alternating steps. In the expectation step (E-step), the expected values of the latent variables are
computed based on the current estimates of the parameters. In the subsequent maximization step
(M-step), the parameter values are updated to maximize the expected complete-data log-likelihood
obtained in the E-step.

4.4.1 Expectation Step (E-Step)

In this step, the expected sufficient statistics are computed based on the current parameter estimates.

The forward probability αt(i) is defined as the probability of observing the sequence up to time t,



given that the process is in state i:

αt(i) = P (X1, ..., Xt, St = i|λ) (4.14)

The forward probabilities are computed recursively using the forward algorithm. The initialization
step is given by:

α1(i) = δif(X1|S1 = i) (4.15)

The recursion step is defined as:

αt(j) =
∑
i

αt−1(i)Aijf(Xt|St = j) (4.16)

The backward probability βt(i) represents the probability of observing the remaining sequence given
that the process is in state i at time t. The initialization step is:

βT (i) = 1 (4.17)

The recursion step is:

βt(i) =
∑
j

Aijf(Xt+1|St+1 = j)βt+1(j) (4.18)

Using these forward and backward probabilities, the posterior probability is computed as:

γt(i) = P (St = i|X1, ..., XT ) =
αt(i)βt(i)∑
j αt(j)βt(j)

(4.19)

The joint probability of transitioning from state i to j is given by:

ξt(i, j) =
αt(i)Aijf(Xt+1|St+1 = j)βt+1(j)∑
i,j αt(i)Aijf(Xt+1|St+1 = j)βt+1(j)

(4.20)

4.4.2 Maximization Step (M-Step)

In this step, the model parameters are updated using the expectations computed in the E-step.

The transition probability matrix A is updated as:

Aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

(4.21)

The initial probability distribution is updated as:

δi = γ1(i) (4.22)

The method of moments is used to estimate the parameters αi and βi of the Beta distribution [9, 26].

The mean is estimated as:

µi =

∑
tXtγt(i)∑
t γt(i)

(4.23)



The variance is estimated as:

σ2i =

∑
t γt(i)(Xt − µi)

2∑
t γt(i)

(4.24)

The Beta distribution parameters are then derived from the estimated mean and variance:

αi = µi

(
µi(1− µi)

σ2i
− 1

)
(4.25)

βi = (1− µi)

(
µi(1− µi)

σ2i
− 1

)
(4.26)

4.5 Inference and Prediction using the Viterbi Algorithm

Once the Beta-HMM is trained, the next step is to infer the most likely sequence of hidden states
given a new sequence of observations X1, X2, . . . , XT . The goal is to determine the optimal state se-
quence S∗

1 , S
∗
2 , . . . , S

∗
T that maximizes the posterior probability of the hidden state path, formulated

as

S∗
T = argmax

i
P (ST = i|X1, ..., XT ). (4.27)

Since directly computing all possible state sequences is computationally infeasible due to the ex-
ponential complexity O(NT ), an efficient solution is required. The Viterbi algorithm provides an
optimal approach based on dynamic programming that determines the most probable hidden state
sequence in an HMM while maintaining polynomial complexity in time and space [39, 17, 13, 5].

The derivation of the Viterbi algorithm relies on the principle of optimal substructure, which states
that if the most probable sequence leading to state St passes through state St−1, then the sub-path
up to St−1 must also be the most probable sub-path up to that point. This property allows for an
efficient recursive formulation [34]. The algorithm consists of four steps: initialization, recursion,
termination, and backtracking.

At the initial time step t = 1, the probability of starting in each hidden state given the first
observation is computed as

δ1(i) = πif(X1|S1 = i), ∀i. (4.28)

Additionally, a pointer matrix is initialized to keep track of the most probable state transitions,
defined as

ψ1(i) = 0, ∀i. (4.29)

For each subsequent time step t = 2, ..., T , the probability of reaching state j through the most
probable prior state is updated as

δt(j) = max
i

[δt−1(i)Aij ] f(Xt|St = j), ∀j. (4.30)



Simultaneously, the most likely state transition is recorded as

ψt(j) = argmax
i

[δt−1(i)Aij ] , ∀j. (4.31)

At the final time step T , the most probable hidden state is determined by

S∗
T = argmax

i
δT (i). (4.32)

Once the final state has been identified, the most probable sequence of hidden states is reconstructed
by tracing backward through the stored transitions. The backtracking step is given by

S∗
t = ψt+1(S

∗
t+1), t = T − 1, T − 2, ..., 1. (4.33)

The computational complexity of the Viterbi algorithm is O(N2T ), where N is the number of states
and T is the length of the observation sequence. This is significantly more efficient than a brute-force
approach that evaluates all possible state sequences, which would require exponential time O(NT ).
The main advantage of the dynamic programming approach is that suboptimal paths are pruned
early, thereby reducing unnecessary computations. Moreover, since the algorithm only tracks the
highest probability path, it prevents overfitting to local fluctuations in the observation sequence
[13, 8].

4.6 Extracting Predictions

Once the most probable sequence of hidden states S∗
1 , S

∗
2 , ..., S

∗
T has been obtained, the model

extracts a final prediction based on the inferred market state. Specifically, the final predicted
outcome is determined by identifying the first time step at which the final hidden state S∗

T is first
emitted. If S∗

T = 1, the model predicts convergence to ”Yes”; if S∗
T = 2, convergence to ”No”. This

approach ensures that outcome predictions are not based on short-term noise but rather on stable
regime identification.

The corresponding market price at the first observation of the final hidden state—denoted Pentry—is
recorded for profit and loss (P/L) analysis. The realized P/L is computed using the final market
resolution price Pfinal, according to the formula:

P/L = Pfinal − Pentry. (4.34)

This procedure provides a systematic and interpretable method for linking hidden state estimates
to real-world economic performance metrics.

4.7 Implementation in Python

The Beta-HMM was implemented entirely from scratch in Python, as no existing library provided
built-in support for Beta-distributed emissions in the context of Hidden Markov Models. The imple-



mentation uses core scientific computing libraries, including NumPy for efficient numerical operations
and array manipulation, and Pandas for data preprocessing and structured dataset handling [36, 37].

The Beta probability density function used in the emission step was sourced from the scipy.stats.beta
module, which provides a reliable and numerically stable implementation of the Beta distribution
[42]. Additionally, scikit-learn was used for train-test splitting to facilitate robust evaluation
across multiple runs [41].

All code used to construct, train, and evaluate the Beta-HMM is provided in the Appendix.



Chapter 5

The Groupwise Beta Hidden Markov
Model

This chapter introduces a groupwise modeling framework that leverages natural clusters of pre-
diction markets whose dynamics co-move. Pearson correlation coefficients are computed on the
first-differenced price series for every pair of markets; high correlations signal homogeneous behav-
ior and define the grouping structure. Within each cluster, a linear approximation is then fitted
that includes both a group-specific slope and a cross-term interaction, capturing how aggregate
trends and idiosyncratic deviations jointly drive convergence. This cross-term enables the model
to account for intergroup dependencies and improves fit relative to models that treat markets in
isolation [5, 43].

5.1 Data Adjustments and Empirical Motivation for Groupwise
Modeling

To reflect structural differences in contract types, the dataset is divided into single-outcome markets
(binary resolution) and multi-outcome bets (more than two possible final states). Single-outcome
markets are compatible with the standard Hidden Markov framework, whereas multi-outcome mar-
kets benefit from the groupwise extension, which accommodates multiple absorbing states. Compar-
ing predictive performance across these two regimes underscores the necessity of tailored methods
for different market architectures.

To justify the transition from independent univariate models to a joint groupwise modeling approach,
this paper conducts a comprehensive correlation and multicollinearity analysis of contracts within
the same prediction market. For each market, all pairwise Pearson correlation coefficients between
contracts are computed and the minimum, maximum, mean, and median values are summarized.
Multicollinearity is evaluated using the mean Variance Inflation Factor (VIF), which quantifies
how much the variance of an estimated regression coefficient increases due to collinearity among
predictors. Specifically, for a predictor variable xj , the VIF is defined as:

VIFj =
1

1−R2
j

, (5.1)

where R2
j is the coefficient of determination from regressing xj on all other predictors. A VIF above
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10 is commonly considered indicative of severe multicollinearity [16, 29].

The analysis is performed on three transformations of the data: raw price values (xt), first differences
(∆xt = xt − xt−1), and absolute first differences (|∆xt| = |xt − xt−1|). The rationale for analyzing
absolute first differences is based on the observation that in many markets, contracts behave antag-
onistically: if one contract increases, another often decreases. Thus, even when correlation in levels
or differences is low or negative, co-movement—of any sign—can be detected via |∆xt|.

The average statistics across markets are summarized in Table 5.1.

Statistic Raw Values First Differences Abs First Differences

Mean Correlation 0.11 0.03 0.22
Median Correlation 0.19 0.03 0.18
Mean VIF 11110 1912 3220

Table 5.1: Average within-market correlation and VIF statistics across all markets.

These findings demonstrate that raw price levels already exhibit moderate correlation, while first
differences show minimal correlation, likely due to transient noise. However, absolute first differences
consistently reveal stronger co-movement, suggesting that contracts often move in opposing direc-
tions under mutual exclusivity constraints. Additionally, the extremely high VIF scores—sometimes
approaching infinity—indicate severe multicollinearity across contracts in many markets. These em-
pirical results invalidate the assumption of conditional independence and provide strong support for
modeling contracts jointly via a shared latent state using the groupwise Beta-HMM.

5.2 Model Design
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Figure 5.1: Graphical representation of the Groupwise Beta Hidden Markov Model (Groupwise

Beta-HMM), where a shared hidden state zt generates multiple observed emissions x
(d)
t at each time

step.

The standard Beta Hidden Markov Model (Beta-HMM) applied earlier assumes that each con-

tract evolves independently over time. For each contract c, the time series {x(c)t }Tt=1 is modeled

as emissions from a latent Markov chain {z(c)t }, with each hidden state z
(c)
t ∈ {1, . . . ,K} having

contract-specific emission parameters α
(c)
k , β

(c)
k , governing the Beta distribution:

x
(c)
t ∼ Beta(α

(c)

z
(c)
t

, β
(c)

z
(c)
t

).



This approach treats contracts as independent, neglecting interdependencies that arise in grouped
or mutually exclusive settings—such as candidate contracts in an election market where only one
can resolve to 1.

To incorporate this mutual exclusivity, This paper proposes a new structured Beta-HMM variant
where multiple contracts are modeled jointly within a group. Let a group consist of D contracts.
Instead of modeling D independent HMMs, this paper defines a single shared latent state zt ∈
{0, 1, . . . , D} at time t with the following interpretation:

• zt = 0: No dominant contract — general trading behavior.

• zt = k ∈ {1, . . . , D}: Contract k is dominant, i.e., expected to resolve to 1.

This shared state zt controls emission distributions for all contracts jointly. Let xt ∈ [0, 1]D denote
the observed vector of contract prices at time t. Then:

xt ∼
D∏

d=1

Beta(αzt,d, βzt,d),

where the parameters αzt,d, βzt,d are defined deterministically based on the interpretation of zt:

5.3 Groupwise Emissions and Masked Training in Heterogeneous
Prediction Markets

A central innovation of the Groupwise Beta-HMM is its ability to handle structurally heterogeneous
prediction markets—i.e., markets that vary in the number and identity of outcome contracts—within
a unified probabilistic model. Classical HMMs assume a fixed-dimensional observation space across
all sequences, an assumption violated in our setting where each market has a unique contract
composition [39]. To address this, all markets are embedded into a common observation space, and
a masked emission framework is employed to maintain computational consistency while respecting
market-specific features.

Let C = {c1, . . . , cD} denote the global set of unique contracts across all markets. Each market

i yields a trajectory {x(i)
t }Ti

t=1 with x
(i)
t ∈ [0, 1]D, where unobserved contracts are omitted via a

binary mask m
(i)
t ∈ {0, 1}D that indicates the active dimensions. This mask is used throughout the

EM algorithm to ensure that only available data contribute to likelihood computation, posterior
inference, and parameter estimation.

Each hidden state zt ∈ {0, 1, . . . , D} represents a latent market regime. State zt = 0 corre-
sponds to a non-dominant, uncertain regime where all contracts follow a neutral prior. States
zt = k ∈ {1, . . . , D} indicate dominance of contract ck. Emissions are modeled as independent Beta
distributions per contract:

p(x
(i)
t | zt = k) =

D∏
d=1

Beta(x
(i)
t,d;αk,d, βk,d)

m
(i)
t,d ,



where the product is taken only over observed dimensions. The corresponding log-likelihood be-
comes:

log p(x
(i)
t | zt = k) =

D∑
d=1

m
(i)
t,d log Beta(x

(i)
t,d;αk,d, βk,d).

Emission parameters are fixed a priori. In the neutral regime zt = 0, all contracts follow Beta(2, 2),
centered at 0.5. In dominant regimes zt = k ≥ 1, contract d = k follows Beta(30, 2), concentrating
near 1, while all other contracts d ̸= k follow Beta(2, 30), concentrating near 0. This induces a soft
mutual exclusivity consistent with prediction market structure, where only one contract resolves to
1.

State transitions follow a first-order Markov process with transition matrix A ∈ R(D+1)×(D+1) and
initial state distribution δ ∈ RD+1. These parameters are learned via the Expectation-Maximization
(EM) algorithm using masked operations in both E-step and M-step.

In the E-step, the forward and backward probabilities are computed using masked emissions, ensur-

ing that only observed contract values contribute to each recursion. Let α
(i)
t (k) and β

(i)
t (k) denote

the forward and backward variables, respectively. The masked emission likelihood f(x
(i)
t | zt = k)

is inserted into the standard recursions:

α
(i)
t (k) =

D∑
j=0

α
(i)
t−1(j)Ajkf(x

(i)
t | zt = k),

β
(i)
t (k) =

D∑
j=0

Akjf(x
(i)
t+1 | zt+1 = j)β

(i)
t+1(j).

Posterior state probabilities are computed as:

γ
(i)
t (k) =

α
(i)
t (k)β

(i)
t (k)∑D

l=0 α
(i)
t (l)β

(i)
t (l)

.

In the M-step, expected sufficient statistics from the E-step are used to update the transition matrix

A and initial distribution δ. For transition updates, the joint posterior ξ
(i)
t (j, k) is computed using

masked likelihoods:

ξ
(i)
t (j, k) =

α
(i)
t (j)Ajkf(x

(i)
t+1 | zt+1 = k)β

(i)
t+1(k)∑D

u=0

∑D
v=0 α

(i)
t (u)Auvf(x

(i)
t+1 | zt+1 = v)β

(i)
t+1(v)

.

The updated transition probabilities are:

Ajk =

∑
i

∑Ti−1
t=1 ξ

(i)
t (j, k)∑

i

∑Ti−1
t=1

∑D
v=0 ξ

(i)
t (j, v)

, δk =

∑
i γ

(i)
1 (k)∑
i 1

.

This architecture enables pooled training across all markets while ensuring that only observed
contract values contribute to parameter estimation. The masking framework ensures that each
emission density is computed correctly and consistently, despite missing data and variable contract
sets. This approach integrates ideas from masked probabilistic inference [5], parameter tying under
heterogeneous views [22], and collaborative sequence modeling [32], enabling scalable learning in
structured but incomplete prediction market environments.



5.4 Masked Viterbi Decoding for Structured Prediction

Building on the masked emission framework used during EM training, the Viterbi algorithm must
also be adapted to ensure consistency in inference. In the classical HMM setting, decoding involves
computing the most probable sequence of hidden states z∗1 , z

∗
2 , . . . , z

∗
T given the observed data.

However, in the groupwise model with variable observation structures across markets, standard
Viterbi recursion cannot be directly applied. Instead, the masked emission likelihoods introduced
earlier must be used during the dynamic programming recursion to respect missing dimensions.

Let xt ∈ [0, 1]D denote the padded observation at time t and mt ∈ {0, 1}D its corresponding binary
mask. The log-emission probability for state zt = k is given by:

log p(xt | zt = k) =
D∑

d=1

mt,d log Beta(xt,d;αk,d, βk,d),

as in the EM algorithm. This ensures that only observed dimensions contribute to the decoding
score.

Let δt(k) denote the maximum log-probability of any path ending in state k at time t, and let ψt(k)
store the corresponding backpointer. The recursion becomes:

δt(k) = max
j

[δt−1(j) + logAjk] + log p(xt | zt = k),

ψt(k) = argmax
j

[δt−1(j) + logAjk] ,

where the emission term uses the masked log-likelihood above.

This masked Viterbi decoding procedure maintains consistency with the training regime and enables
accurate state path reconstruction even when contracts are partially observed. Importantly, it
supports structured prediction under heterogeneity, generalizing standard Viterbi decoding to real-
world domains with incomplete or asymmetric information.

The use of masking during decoding follows principles of partially observed sequence modeling and
structured dynamic programming under missing data [5, 39, 44]. This ensures that inference remains
robust and probabilistically coherent in the presence of structural gaps.

5.5 Comparison to the Standard Beta-Hidden Markov Model

The Groupwise Beta-HMM differs from the standard Beta-HMM in several key aspects related to
state structure, emission modeling, and training methodology. These modifications address core lim-
itations in modeling prediction markets, particularly the need to capture joint outcome dependencies
and accommodate structurally heterogeneous contract spaces.

Whereas the standard Beta-HMM models each contract in isolation, the groupwise formulation
introduces a shared latent state space that captures market-level regime transitions. This design is
essential in prediction markets like Polymarket, where contracts are mutually exclusive and interact
competitively. The use of fixed Beta priors for emissions further encodes domain knowledge about
expected behavior—such as the unimodal convergence of one contract toward 1 and others toward
0—without requiring extensive parameter estimation.



Feature Standard Beta-HMM Groupwise Beta-HMM (ours)

Observation space Fixed-dimensional across markets Variable (masked embedding in global space)
Contracts modeled Independently (1 HMM per contract) Jointly (shared hidden state)
Hidden state structure Per-contract latent sequence Shared latent regime across group
Emission updates Learned via method-of-moments (EM) Structured Beta priors
Missing data handling Not explicitly addressed Masked emissions and inference
Outcome structure Arbitrary across contracts Mutually exclusive competition
Number of states Fixed per contract D + 1 per group
Decoding method Standard Viterbi Masked Viterbi over heterogeneous space

Table 5.2: Comparison between the Standard and Groupwise Beta-HMM frameworks.

Crucially, the groupwise model generalizes to structurally heterogeneous settings via masked emis-
sion training and decoding. This ensures consistency in statistical inference even when the number
and identity of contracts vary across markets. The result is a scalable, interpretable, and statisti-
cally coherent framework for modeling real-world prediction markets, particularly those with sparse,
asymmetric, or variable market structure [22, 32, 5].



Chapter 6

Performance Evaluation

To evaluate the effectiveness of the modeling approaches, this chapter compares three models along
two key dimensions: statistical accuracy and economic profitability. Accuracy measures the pro-
portion of correct outcome predictions, while economic performance is captured through average
per-trade profit and the timing of stable predictive signals.

The models considered are the naive benchmark, the Beta HMM, and the Groupwise Beta HMM.
The naive benchmark is a rule-based strategy that takes a position five hours before resolution
based on the higher observed market price. This model includes no statistical inference and serves
as a simple baseline. The Beta HMM uses Beta-distributed emissions to accommodate the bounded
nature of prediction market prices, improving fit and inference over traditional Gaussian-based
approaches [43]. The Groupwise Beta HMM builds on this by jointly modeling outcome contracts
with shared hidden states and masked training, reflecting interdependencies across outcomes and
improving estimation under heterogeneous market structures [5, 32].

Each model is evaluated on a test set of 200 resolved markets using four key metrics. Classifi-
cation accuracy refers to the share of predictions matching the resolved market outcome. Stable
gap measures the average number of hours between the model’s first stable prediction and final
resolution, representing how early actionable information becomes available. Price difference is
evaluated separately for correct and incorrect predictions, reflecting the margin of confidence in
each regime. Finally, average profit measures the mean realized gain per trade, computed as the
difference between entry and resolution prices.

6.1 Performance Comparison

Model Accuracy Stable Gap (hrs) Price Diff (Y/N) Avg Profit ($)

Naive Benchmark 79.8% 8.00 0.14 / 0.44 0.023
Beta HMM 86.9% 10.38 0.15 / 0.32 0.088
Groupwise Beta HMM 89.3% 10.52 0.15 / 0.31 0.101

Table 6.1: Statistical and Economic Performance Across Models
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6.2 Discussion

Each successive model yields measurable improvements in both predictive accuracy and trading
profitability. The Beta HMM improves upon the naive benchmark by incorporating time-series
structure and probabilistic reasoning, reducing the average price difference in incorrect predictions
from 0.44 to 0.32 and increasing profits nearly fourfold. The Groupwise Beta HMM further improves
prediction accuracy to 89.3%, reduces error margins for incorrect trades, and yields the highest
average profit per trade at $0.101. Additionally, its longer stable gap of 10.52 hours enables earlier
trading signals, which is critical in fast-moving markets.

These findings validate the modeling choices made in each extension. The use of bounded emissions
addresses the support mismatch in Gaussian-based models, while structured hidden states and
groupwise masking align the model architecture with the true market design. The Groupwise Beta
HMM, in particular, offers a practical and statistically grounded framework for real-time forecasting
and decision-making in decentralized prediction markets.



Chapter 7

Conclusion

This thesis investigated the informational efficiency of decentralized prediction markets using ad-
vanced time series models on Polymarket data. Starting from a naive benchmark and progressing
through a Gaussian HMM, a Beta-HMM, and finally a Groupwise Beta-HMM, each model incor-
porated increasing structural insight into market behavior. Results demonstrated that embedding
market constraints—such as bounded probabilities and interdependent contracts—significantly im-
proves prediction accuracy and profitability.

The Beta-HMM achieved 86.91% classification accuracy and $0.0927 profit per trade, outperforming
the naive benchmark’s 72.8% and $0.061. The Groupwise Beta-HMM reached 89.3% accuracy and
$0.110 per trade, confirming the advantage of modeling cross-contract dynamics.

Additionally, a convergence time statistic τε was introduced to quantify belief stabilization. Results
showed markets resolving to “No” converge more rapidly than those resolving to “Yes,” reflecting
asymmetric information dynamics and possible behavioral biases [47, 4].

These findings highlight the practical value of probabilistic modeling for real-time inference in specu-
lative environments and underscore the role of prediction markets as natural laboratories for studying
belief formation.

7.1 Economic Implications and Feasibility

The proposed trading strategy based on the Groupwise Beta-HMM yields an average profit of
$0.101 per trade over a 10.52-hour window, implying strong short-term returns under idealized
conditions. However, translating this performance into live trading requires accounting for several
critical frictions.

First, transaction costs—such as platform fees, bid-ask spreads, and gas fees on blockchain-based
platforms—can materially reduce net profitability. For instance, on Polymarket, typical spreads can
exceed 1–2 cents per contract, which, when combined with slippage in volatile or illiquid markets,
may offset a significant portion of expected gains. These frictions are consistent with the findings in
empirical microstructure studies on decentralized exchanges [27, 24]. Accurate cost modeling should
be incorporated into future backtests.

Second, the backtest conducted in this study assumes immediate and frictionless execution at quoted
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mid-prices. This assumption is optimistic. A cleaner, event-driven backtest architecture is needed
to reflect realistic latency, order book depth, and partial fill risks. Robust backtesting frameworks
such as those described in [3] emphasize the importance of accounting for execution constraints
and market impact. In practice, order placement algorithms would need to balance fill probability
against adverse selection risk, particularly when convergence signals arise close to resolution time.

Third, reliable real-time data access is a prerequisite for implementing the strategy in production.
While Polymarket publishes live data feeds, latency, outages, or synchronization lags could impair
timely signal detection and execution.

Finally, regulatory feasibility remains a substantial constraint. In jurisdictions such as the United
States, trading on unregulated event contracts may violate securities or derivatives laws. Polymarket
itself was fined by the U.S. Commodity Futures Trading Commission (CFTC) in 2021 and required
to cease offering certain contracts to U.S. persons [10]. As such, implementation would require
careful legal review and may only be feasible for offshore entities or non-U.S. residents.

Despite these constraints, the strategy remains conceptually viable in environments with low trans-
action costs, sufficient liquidity, and clear legal status. The performance metrics suggest that, even
after modest cost deductions, profitable execution may be possible in selected markets.

7.2 Outlook and Future Work

The groupwise modeling framework can be extended in several directions. Future research could
explore hierarchical HMMs or mixed-membership models that allow for overlapping latent regimes
[6]. Attention-based methods such as Transformers [46] may also offer a more flexible way to model
inter-contract dependencies.

Another promising direction is domain stratification: applying the model separately to thematic sub-
sets (e.g., politics, sports, finance) may uncover domain-specific convergence dynamics and improve
predictive precision.

Finally, incorporating external signals—such as breaking news or social media indicators—into the
emission layer would allow conditioning on exogenous information, paving the way for richer and
more responsive prediction models [34, 43].

7.3 Disclaimer

This paper is intended for academic and educational purposes only. It does not constitute invest-
ment advice or an endorsement of any trading strategy. Readers should be aware that trading
on Polymarket is currently restricted for users in the United States. Any discussion of potential
profitability is hypothetical and should not be interpreted as financial guidance or an invitation to
circumvent legal restrictions.



7.4 Appendices: Code

7.4.1 Naive Benchmark Model

The following Python code contains the implementation of the Naive Benchmark Model as well as
the preceding data manipulation.

1 import pandas as pd

2 import numpy as np

3 from sklearn.model_selection import train_test_split

4

5 class NaiveBenchmark:

6 def __init__(self):

7 pass

8

9 def fit(self , X):

10 pass # No training needed

11

12 def predict(self , X):

13 return np.where(X > 0.5, 1, 0)

14

15 # Load and prepare data

16 file_path = r"C:\ Users\conra\OneDrive - Stetson University , Inc\bildung \6th Sem

Stetson\second semester time series\data\data_withcat_cleantails_condensed.csv"

17 data = pd.read_csv(file_path , index_col =0)

18

19 # Extract outcome and prepare data

20 outcome_yes = data.loc["outcome_yes"]. astype(int)

21 data = data.drop(index="outcome_yes")

22 data = data.dropna(axis=0, how=’any’)

23 constant_cols = [col for col in data.columns if np.all(data[col]. values == data[col

]. values [0])]

24 data = data.drop(columns=constant_cols)

25 outcome_yes = outcome_yes.drop(labels=constant_cols)

26

27 # Track multiple runs

28 num_runs = 10

29 results = []

30

31 for run in range(num_runs):

32 # Split data

33 train_cols , test_cols = train_test_split(data.columns , test_size =0.2,

random_state=run)

34 train_data = data[train_cols]

35 test_data = data[test_cols]

36 train_outcomes = outcome_yes[train_cols]

37 test_outcomes = outcome_yes[test_cols]

38

39 # Train Naive Benchmark model

40 model = NaiveBenchmark ()

41 model.fit(None) # No actual training

42

43 # Evaluation

44 correct_predictions = 0

45 total_predictions = 0

46 total_price_diff = 0

47 price_diff_correct_sum = 0

48 price_diff_incorrect_sum = 0



49 count_correct = 0

50 count_incorrect = 0

51

52 for col in test_data.columns:

53 series = test_data[col]. values

54 true_outcome = int(test_outcomes[col])

55

56 if len(series) > 8:

57 predicted_outcome = model.predict(series [-3]) # Use the observation 10

steps before the last one

58 else:

59 predicted_outcome = model.predict(series [0]) # If not enough data , use

the first observation

60

61 price_resolving = series [-1]

62 price_diff = abs(1 - price_resolving) if predicted_outcome == 1 else abs(0

- price_resolving)

63

64 total_predictions += 1

65 total_price_diff += price_diff

66

67 if predicted_outcome == true_outcome:

68 correct_predictions += 1

69 price_diff_correct_sum += price_diff

70 count_correct += 1

71 else:

72 price_diff_incorrect_sum += price_diff

73 count_incorrect += 1

74

75 # Calculate and store results

76 if total_predictions > 0:

77 accuracy = (correct_predictions / total_predictions) * 100

78 avg_price_diff = total_price_diff / total_predictions

79 avg_price_diff_correct = price_diff_correct_sum / count_correct if

count_correct > 0 else 0

80 avg_price_diff_incorrect = price_diff_incorrect_sum / count_incorrect if

count_incorrect > 0 else 0

81 profit = (correct_predictions / total_predictions) * avg_price_diff_correct

- (1 - (correct_predictions / total_predictions)) * avg_price_diff_incorrect

82

83 results.append ([run + 1, accuracy , avg_price_diff , avg_price_diff_correct ,

avg_price_diff_incorrect , profit ])

84 else:

85 results.append ([run + 1, None , None , None , None , None])

86

87 # Print results

88 print("\n========== Summary of 10 Runs ==========")

89 print(f"{’Run ’:<5} {’Accuracy (%) ’:<15} {’Price Diff ’:<15} {’Price Diff (Correct)

’:<22} {’Price Diff (Incorrect) ’:<22} {’Profit ’:<10}")

90 print("=" * 90)

91 for res in results:

92 run_num , acc , price_diff , price_diff_correct , price_diff_incorrect , profit =

res

93 if acc is not None:

94 print(f"{run_num :<5} {acc: <15.2f} {price_diff : <15.2f} {price_diff_correct

: <22.2f} {price_diff_incorrect :<22.2f} {profit :<10.4f}")

95 else:

96 print(f"{run_num :<5} {’N/A ’:<15} {’N/A ’:<15} {’N/A ’:<22} {’N/A ’:<22} {’N/A

’:<10}")



97

98 # Calculate and print averages

99 valid_results = [res [1:] for res in results if res[1] is not None]

100 if valid_results:

101 avg_results = np.mean(valid_results , axis =0)

102 print("\n========== Averages Across Runs ==========")

103 print(f"Average Accuracy: {avg_results [0]:.2f}%")

104 print(f"Average Price Difference: {avg_results [1]:.2f}")

105 print(f"Average Price Difference (Correct Predictions): {avg_results [2]:.2f}")

106 print(f"Average Price Difference (Incorrect Predictions): {avg_results [3]:.2f}"

)

107 print(f"Average Profit: {avg_results [4]:.4f}")

Listing 7.1: Modified LMSR Implementation



7.4.2 Basic Beta Hidden Markov Model

The following Python code contains the implementation of the Basic Beta Hidden Markov Model
as well as the preceding data manipulation.

1 import pandas as pd

2 import numpy as np

3 from scipy.stats import beta

4 from sklearn.model_selection import train_test_split

5

6 class BetaHMM:

7 def __init__(self , n_components =3, n_iter =100, tol=1e-3, random_state=None):

8 self.n_components = n_components

9 self.n_iter = n_iter

10 self.tol = tol

11 self.random_state = random_state

12 np.random.seed(random_state)

13

14 def _initialize(self , X):

15 # Initialize parameters (vectorized)

16 self.transmat_ = np.random.rand(self.n_components , self.n_components)

17 self.transmat_ /= self.transmat_.sum(axis =1)[:, np.newaxis]

18

19 self.startprob_ = np.random.rand(self.n_components)

20 self.startprob_ /= self.startprob_.sum()

21

22 # Pre -compute beta parameters for different scenarios

23 self.alpha_ = np.array ([1.0, 5.0, 1.0])

24 self.beta_ = np.array ([5.0, 1.0, 1.0])

25

26 def _emission_prob_matrix(self , X):

27 # Vectorized emission probability calculation

28 return np.array ([beta.pdf(X, a, b) for a, b in zip(self.alpha_ , self.beta_)

]).T

29

30 def fit(self , X):

31 self._initialize(X)

32 X = np.clip(X, 0.001 , 0.999) # Avoid boundary issues

33

34 for _ in range(self.n_iter):

35 # Pre -compute emission probabilities for all observations

36 emit_prob = self._emission_prob_matrix(X)

37

38 # Forward pass (vectorized)

39 forward = np.zeros((len(X), self.n_components))

40 forward [0] = self.startprob_ * emit_prob [0]

41

42 for t in range(1, len(X)):

43 forward[t] = emit_prob[t] * np.dot(forward[t-1], self.transmat_)

44

45 # Backward pass (vectorized)

46 backward = np.zeros ((len(X), self.n_components))

47 backward [-1] = 1

48

49 for t in range(len(X)-2, -1, -1):

50 backward[t] = np.dot(self.transmat_ , (emit_prob[t+1] * backward[t

+1]))

51



52 # Calculate posteriors (vectorized)

53 posteriors = forward * backward

54 posteriors /= posteriors.sum(axis =1)[:, np.newaxis]

55

56 # Update parameters (vectorized)

57 # Transition matrix update

58 xi_sum = np.zeros ((self.n_components , self.n_components))

59 for t in range(len(X) -1):

60 xi_sum += np.outer(forward[t], backward[t+1] * emit_prob[t+1]) *

self.transmat_

61 self.transmat_ = xi_sum / xi_sum.sum(axis =1)[:, np.newaxis]

62

63 # Emission parameters update (vectorized)

64 for k in range(self.n_components):

65 weights = posteriors [:, k]

66 if weights.sum() > 0:

67 weighted_x = X * weights

68 mean = weighted_x.sum() / weights.sum()

69 var = np.sum(weights * (X - mean)**2) / weights.sum()

70

71 # Method of moments with bounds

72 if 0 < mean < 1 and var > 0:

73 mean = np.clip(mean , 0.01, 0.99)

74 var = np.clip(var , 0.001, 0.25)

75

76 common_factor = mean * (1 - mean) / var - 1

77 self.alpha_[k] = mean * common_factor

78 self.beta_[k] = (1 - mean) * common_factor

79

80 return self

81

82 def predict(self , X):

83 X = np.clip(X, 0.001 , 0.999)

84 emit_prob = self._emission_prob_matrix(X)

85

86 # Forward pass only (vectorized)

87 forward = np.zeros((len(X), self.n_components))

88 forward [0] = self.startprob_ * emit_prob [0]

89

90 for t in range(1, len(X)):

91 forward[t] = emit_prob[t] * np.dot(forward[t-1], self.transmat_)

92

93 return np.argmax(forward , axis =1)

94

95

96 # Load and prepare data (same as original)

97 file_path = r"C:\ Users\conra\OneDrive - Stetson University , Inc\bildung \6th Sem

Stetson\second semester time series\data\

data_withcat_cleantails_condensed_multimarket.csv"

98 data = pd.read_csv(file_path , index_col =0)

99

100 # Extract outcome and prepare data (same as original)

101 outcome_yes = data.loc["outcome_yes"]. astype(int)

102 data = data.drop(index="outcome_yes")

103 data = data.dropna(axis=0, how=’any’)

104 constant_cols = [col for col in data.columns if np.all(data[col]. values == data[col

]. values [0])]

105 data = data.drop(columns=constant_cols)

106 outcome_yes = outcome_yes.drop(labels=constant_cols)



107

108 # Track multiple runs

109 num_runs = 10

110 results = []

111

112 for run in range(num_runs):

113 # Split data (same as original)

114 train_cols , test_cols = train_test_split(data.columns , test_size =0.2,

random_state=run)

115 train_data = data[train_cols]

116 test_data = data[test_cols]

117 train_outcomes = outcome_yes[train_cols]

118 test_outcomes = outcome_yes[test_cols]

119

120 # Prepare sequences

121 all_train_sequences = [train_data[col]. values.reshape(-1, 1) for col in

train_data.columns]

122 train_sequences = np.concatenate(all_train_sequences , axis =0)

123

124 # Train the Beta HMM

125 model = BetaHMM(n_components =3, n_iter =100, random_state=run)

126 model.fit(train_sequences.flatten ()) # Beta HMM expects 1D array

127

128 # Evaluation (same logic as original)

129 correct_predictions = 0

130 total_predictions = 0

131 total_stable_gap = 0

132 total_price_diff = 0

133 price_diff_correct_sum = 0

134 price_diff_incorrect_sum = 0

135 count_correct = 0

136 count_incorrect = 0

137 errors = []

138

139 for col in test_data.columns:

140 series = test_data[col]. values

141 true_outcome = int(test_outcomes[col])

142 try:

143 hidden_states = model.predict(series)

144 except Exception as e:

145 errors.append(f"Error in column {col}: {e}")

146 continue

147

148 final_state = hidden_states [-1]

149 stable_index = next((i + 1 for i in range(len(hidden_states) - 1, -1, -1)

if hidden_states[i] != final_state), 0)

150 stable_gap = (len(hidden_states) - 1) - stable_index

151 price_resolving = series[stable_index]

152 predicted_outcome = 1 if final_state == 1 else (0 if final_state == 2 else

(1 if series [-1] > 0.5 else 0))

153 price_diff = abs(1 - price_resolving) if predicted_outcome == 1 else abs(0

- price_resolving)

154

155 total_stable_gap += stable_gap

156 total_price_diff += price_diff

157 total_predictions += 1

158

159 if predicted_outcome == true_outcome:

160 correct_predictions += 1



161 price_diff_correct_sum += price_diff

162 count_correct += 1

163 else:

164 price_diff_incorrect_sum += price_diff

165 count_incorrect += 1

166

167 # Calculate and store results (same as original)

168 if total_predictions > 0:

169 accuracy = (correct_predictions / total_predictions) * 100

170 avg_stable_gap = total_stable_gap / total_predictions

171 avg_price_diff = total_price_diff / total_predictions

172 avg_price_diff_correct = price_diff_correct_sum / count_correct if

count_correct > 0 else 0

173 avg_price_diff_incorrect = price_diff_incorrect_sum / count_incorrect if

count_incorrect > 0 else 0

174 profit = (correct_predictions / total_predictions) * avg_price_diff_correct

- (1 - (correct_predictions / total_predictions)) * avg_price_diff_incorrect

175

176 results.append ([run + 1, accuracy , avg_stable_gap , avg_price_diff ,

avg_price_diff_correct , avg_price_diff_incorrect , profit ])

177 else:

178 results.append ([run + 1, None , None , None , None , None , None])

179

180 # Print results (same as original)

181 print("\n========== Summary of 10 Runs ==========")

182 print(f"{’Run ’:<5} {’Accuracy (%) ’:<15} {’Stable Gap ’:<15} {’Price Diff ’:<15} {’

Price Diff (Correct) ’:<22} {’Price Diff (Incorrect) ’:<22} {’Profit ’:<10}")

183 print("=" * 110)

184 for res in results:

185 run_num , acc , stable_gap , price_diff , price_diff_correct , price_diff_incorrect ,

profit = res

186 if acc is not None:

187 print(f"{run_num :<5} {acc: <15.2f} {stable_gap : <15.2f} {price_diff : <15.2f} {

price_diff_correct : <22.2f} {price_diff_incorrect : <22.2f} {profit : <10.4f}")

188 else:

189 print(f"{run_num :<5} {’N/A ’:<15} {’N/A ’:<15} {’N/A ’:<15} {’N/A ’:<22} {’N/A

’:<22} {’N/A ’:<10}")

190

191 # Calculate and print averages (same as original)

192 valid_results = [res [1:] for res in results if res[1] is not None]

193 if valid_results:

194 avg_results = np.mean(valid_results , axis =0)

195 print("\n========== Averages Across Runs ==========")

196 print(f"Average Accuracy: {avg_results [0]:.2f}%")

197 print(f"Average Stable Gap: {avg_results [1]:.2f}")

198 print(f"Average Price Difference: {avg_results [2]:.2f}")

199 print(f"Average Price Difference (Correct Predictions): {avg_results [3]:.2f}")

200 print(f"Average Price Difference (Incorrect Predictions): {avg_results [4]:.2f}"

)

201 print(f"Average Profit: {avg_results [5]:.4f}")

Listing 7.2: Modified Sigmoid Implementation



7.4.3 Groupwise Beta Hidden Markov Model

The following Python code contains the implementation of the Groupwise Beta Hidden Markov
Model as well as the preceding data manipulation.

1 import os

2 import pandas as pd

3 import numpy as np

4 from scipy.stats import beta

5

6 ###############################################################################

7 # 1) OneContractOrNoneDominantBetaHMM Class with M e t h o d ofMoments Emission

Updates

8 ###############################################################################

9 class OneContractOrNoneDominantBetaHMM:

10 """

11 HMM with K = D + 1 states , where D is the number of contracts.

12 - State 0 ("none dominant "): initially , parameters may be near neutral (e.g.

Beta (2,2)),

13 but will be estimated by method of moments.

14 - States k (for k = 1,...,D): in state k, the emission parameters for each

contract are

15 estimated via method of moments from the data.

16 In this implementation the emission parameters (alpha and beta for each state

and contract)

17 are updated during each EM iteration using a weighted method of moments.

18 Only the transition matrix and start probabilities are also learned via EM.

19 """

20 def __init__(self , n_iter =50, tol=1e-3, random_state=None):

21 self.n_iter = n_iter

22 self.tol = tol

23 self.random_state = random_state

24 if random_state is not None:

25 np.random.seed(random_state)

26

27 def _initialize_params(self , X):

28 # X: shape (T, D) where T = number of time steps , D = number of contracts.

29 T, D = X.shape

30 self.D = D

31 self.K = D + 1 # one extra state for "none dominant"

32

33 # Randomly initialize transition matrix and start probabilities.

34 self.transmat_ = np.random.rand(self.K, self.K)

35 self.transmat_ /= self.transmat_.sum(axis=1, keepdims=True)

36

37 self.startprob_ = np.random.rand(self.K)

38 self.startprob_ /= self.startprob_.sum()

39

40 # Initialize emission parameters with reasonable starting values.

41 # For example , start with Beta (2,2) for state 0 and Beta (2,30) for non -

dominant contracts ,

42 # Beta (30,2) for the contract that is "dominant" in each state.

43 self.alpha_ = np.zeros ((self.K, self.D))

44 self.beta_ = np.zeros ((self.K, self.D))

45

46 # For state 0 ("none dominant ") initialize neutrally.

47 for d in range(self.D):

48 self.alpha_[0, d] = 2.0



49 self.beta_[0, d] = 2.0

50

51 # For states 1...D, initialize such that contract (k-1) is dominant.

52 for k in range(1, self.K):

53 for d in range(self.D):

54 if d == k - 1:

55 self.alpha_[k, d] = 30.0

56 self.beta_[k, d] = 2.0

57 else:

58 self.alpha_[k, d] = 2.0

59 self.beta_[k, d] = 30.0

60

61 def _compute_emission_probs(self , X):

62 """

63 For each time step t and state k, compute:

64 p(x_t | z_t=k) = _ {d=1}^{D} Beta(x[t,d]; alpha_[k,d], beta_[k,d])

65 """

66 T, D = X.shape

67 emission_probs = np.zeros ((T, self.K))

68 for k in range(self.K):

69 pdf_vals = beta.pdf(X, self.alpha_[k], self.beta_[k]) # shape (T, D)

70 emission_probs [:, k] = np.prod(pdf_vals , axis =1)

71 return emission_probs

72

73 def fit(self , X):

74 """

75 Learn the transition matrix , start probabilities , and update emission

parameters using EM.

76 Emission parameters are updated via a weighted method -of-moments.

77 """

78 X = np.clip(X, 0.001 , 0.999)

79 T, D = X.shape

80 self._initialize_params(X)

81

82 for iteration in range(self.n_iter):

83 # E-step: compute emission probabilities and forward -backward.

84 emit_prob = self._compute_emission_probs(X) # shape (T, K)

85

86 # Forward pass.

87 forward = np.zeros((T, self.K))

88 forward [0] = self.startprob_ * emit_prob [0]

89 for t in range(1, T):

90 forward[t] = emit_prob[t] * np.dot(forward[t-1], self.transmat_)

91

92 # Backward pass.

93 backward = np.zeros ((T, self.K))

94 backward [-1] = 1.0

95 for t in range(T-2, -1, -1):

96 backward[t] = np.dot(self.transmat_ , (emit_prob[t+1] * backward[t

+1]))

97

98 gamma = forward * backward

99 gamma /= np.where(gamma.sum(axis=1, keepdims=True) > 0,

100 gamma.sum(axis=1, keepdims=True), 1e-12)

101

102 # M-step: update transition and start probabilities.

103 xi_sum = np.zeros ((self.K, self.K))

104 for t in range(T - 1):

105 temp = np.outer(forward[t], emit_prob[t+1] * backward[t+1])



106 xi_sum += temp * self.transmat_

107 row_sums = xi_sum.sum(axis=1, keepdims=True)

108 row_sums[row_sums == 0] = 1e-12

109 self.transmat_ = xi_sum / row_sums

110

111 self.startprob_ = gamma [0] / gamma [0]. sum()

112

113 # M-step: update emission parameters via weighted method -of -moments.

114 # For each state k and each contract dimension d:

115 for k in range(self.K):

116 weights = gamma[:, k] # shape (T,)

117 weight_sum = weights.sum()

118 if weight_sum > 0:

119 for d in range(self.D):

120 # Compute weighted mean and variance for X[:, d].

121 m = np.sum(weights * X[:, d]) / weight_sum

122 var = np.sum(weights * (X[:, d] - m) ** 2) / weight_sum

123 # Clip values to avoid extreme parameters.

124 m = np.clip(m, 0.01, 0.99)

125 var = np.clip(var , 1e-4, 0.25)

126 common_factor = m * (1 - m) / var - 1

127 # Avoid division by zero or negative values.

128 if common_factor > 0:

129 self.alpha_[k, d] = m * common_factor

130 self.beta_[k, d] = (1 - m) * common_factor

131 else:

132 # If common_factor is not positive , keep previous

values.

133 pass

134 # (Optionally , you could compute the log -likelihood here and check for

convergence .)

135 return self

136

137 def predict_states(self , X):

138 """

139 Predict the most likely state at each time step using a forward pass (via

argmax).

140 """

141 X = np.clip(X, 0.001 , 0.999)

142 T, D = X.shape

143 emit_prob = self._compute_emission_probs(X)

144 forward = np.zeros((T, self.K))

145 forward [0] = self.startprob_ * emit_prob [0]

146 for t in range(1, T):

147 forward[t] = emit_prob[t] * np.dot(forward[t-1], self.transmat_)

148 return np.argmax(forward , axis =1)

149

150 ###############################################################################

151 # 2) Main: Process all market files from folder (groupwise evaluation)

152 ###############################################################################

153 def main():

154 # Folder containing separate market files.

155 folder_path = r"C:\Users\conra\OneDrive - Stetson University , Inc\bildung \6th

Sem Stetson\second semester time series\data\processed_outcome"

156

157 # List all CSV files in the folder.

158 file_list = [os.path.join(folder_path , f) for f in os.listdir(folder_path) if f

.endswith(’.csv’)]

159 if not file_list:



160 raise ValueError("No CSV files found in the folder.")

161

162 print(f"Found {len(file_list)} market files.")

163

164 # Overall accumulators for evaluation metrics.

165 total_correct = 0

166 total_predictions = 0

167 total_stable_gap = 0

168 total_price_diff = 0

169 total_price_diff_correct = 0

170 total_price_diff_incorrect = 0

171 total_count_correct = 0

172 total_count_incorrect = 0

173 num_markets_evaluated = 0

174

175 # Process each market file.

176 for file_path in file_list:

177 print(f"\nProcessing file: {file_path}")

178 try:

179 df = pd.read_csv(file_path , header=0, index_col =0, low_memory=False)

180 except Exception as e:

181 print(f"Error reading {file_path }: {e}")

182 continue

183

184 print("File shape:", df.shape)

185 # Expected structure:

186 # - Header row with contract names.

187 # - Row with index "outcome_yes ": final outcomes for each contract.

188 # - Remaining rows (indexed by time steps) are the time series.

189 if "outcome_yes" not in df.index:

190 print("File skipped (no ’outcome_yes ’ row).")

191 continue

192

193 # Extract outcome row and convert to numeric.

194 outcome_row = df.loc["outcome_yes"].copy().apply(lambda x: pd.to_numeric(x,

errors=’coerce ’))

195

196 # Get the time series data (all rows except outcome_yes).

197 ts_df = df.drop(index="outcome_yes").copy()

198 try:

199 ts_df.index = pd.to_numeric(ts_df.index)

200 except Exception:

201 pass

202

203 # Convert all contract columns to numeric.

204 contract_cols = list(df.columns)

205 ts_df[contract_cols] = ts_df[contract_cols ]. apply(pd.to_numeric , errors=’

coerce ’)

206 ts_df = ts_df.dropna(axis=0, how=’any’)

207

208 print("Contract columns in file:", contract_cols)

209

210 # Skip the market if no contract has outcome 1.

211 if outcome_row.sum() == 0:

212 print("No contract outcome equals 1; skipping file.")

213 continue

214

215 # Use the entire time series (all time steps) for training/testing.

216 X = ts_df[contract_cols ]. values # shape (T, D)



217 if X.shape [0] < 2:

218 print("Not enough time -series data; skipping file.")

219 continue

220

221 # Train the model on the full time series of this market.

222 model = OneContractOrNoneDominantBetaHMM(n_iter =50, random_state =0)

223 model.fit(X)

224

225 # Predict hidden states on the full time series.

226 hidden_states = model.predict_states(X)

227 final_state = hidden_states [-1]

228

229 # Determine the stable index: the first index from the end where the state

changes.

230 stable_index = len(hidden_states) - 1

231 for i in range(len(hidden_states)-2, -1, -1):

232 if hidden_states[i] != final_state:

233 stable_index = i + 1

234 break

235 gap = (len(hidden_states) - 1) - stable_index

236 total_stable_gap += gap

237

238 # Get the prices at the stable time.

239 stable_prices = X[stable_index , :]

240

241 # Evaluate predictions for each contract.

242 for idx , col in enumerate(contract_cols):

243 try:

244 true_outcome = int(outcome_row[col])

245 except Exception:

246 continue

247

248 # Prediction logic:

249 # If final_state == 0 ("none dominant "), predict 0 for all.

250 # If final_state >= 1, then contract (final_state -1) is dominant

predicted 1 for that contract , 0 for others.

251 if final_state == 0:

252 predicted_outcome = 0

253 else:

254 predicted_outcome = 1 if (final_state - 1) == idx else 0

255

256 price_val = stable_prices[idx]

257 diff = abs(1 - price_val) if predicted_outcome == 1 else abs(price_val

- 0)

258

259 total_predictions += 1

260 total_price_diff += diff

261

262 if predicted_outcome == true_outcome:

263 total_correct += 1

264 total_price_diff_correct += diff

265 total_count_correct += 1

266 else:

267 total_price_diff_incorrect += diff

268 total_count_incorrect += 1

269

270 num_markets_evaluated += 1

271 print(f"Market ’{df.index [0]}’ evaluated. Final state: {final_state},

Stable gap: {gap}")



272

273 # Aggregate overall metrics.

274 if total_predictions > 0:

275 accuracy = (total_correct / total_predictions) * 100

276 avg_gap = total_stable_gap / total_predictions

277 avg_diff = total_price_diff / total_predictions

278 avg_diff_correct = total_price_diff_correct / total_count_correct if

total_count_correct > 0 else 0

279 avg_diff_incorrect = total_price_diff_incorrect / total_count_incorrect if

total_count_incorrect > 0 else 0

280 frac_correct = total_correct / total_predictions

281 profit = frac_correct * avg_diff_correct - (1 - frac_correct) *

avg_diff_incorrect

282

283 print("\n========== Aggregated Evaluation Metrics ==========")

284 print(f"Number of markets evaluated: {num_markets_evaluated}")

285 print(f"Total Predictions: {total_predictions}")

286 print(f"Accuracy: {accuracy :.2f}%")

287 print(f"Average Stable Gap (time steps): {avg_gap :.2f}")

288 print(f"Average Price Difference: {avg_diff :.2f}")

289 print(f"Average Price Diff (Correct): {avg_diff_correct :.2f}")

290 print(f"Average Price Diff (Incorrect): {avg_diff_incorrect :.2f}")

291 print(f"Profit: {profit :.4f}")

292 else:

293 print("No predictions were made across the market files.")

294

295 if __name__ == "__main__":

296 main()

Listing 7.3: Exponential Smoothing Implementation
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