Enhancing the Efficiency of Ant Colony Optimization:
Comparative Analysis of Optimizations and

Multi-Pheromone Strategies

Tommy M. Bennett Conrad O. Voigt
December 7, 2024

Abstract

Ant Colony Optimization (ACO) is a widely used metaheuristic algorithm for solv-
ing complex combinatorial optimization problems, such as the Traveling Salesman Prob-
lem (TSP) and network routing. While effective, standard ACO implementations often
face challenges like premature convergence, inefficiency, and sensitivity to parame-
ter settings. This paper investigates several enhancements to ACO, including adap-
tive multi-pheromone systems, dynamic parameter tuning, and hybrid strategies. Five
configurations—ranging from a baseline implementation to an optimized hybrid ap-
proach—are evaluated on a network routing problem with 50 nodes.

The results highlight the trade-offs between exploration and exploitation across dif-
ferent configurations. Adaptive mechanisms and hybrid strategies significantly improve
performance, with the hybrid implementation achieving the best results, including su-
perior solution quality, fastest convergence (0.50 iterations on average), and lowest
runtime (34.00 seconds). These findings demonstrate the potential of advanced ACO
configurations for addressing complex optimization challenges, offering valuable insights
for future research and real-world applications in fields such as logistics, telecommuni-
cations, and traffic management.

1 Introduction

Optimization problems are central to many fields, including logistics, telecommunications,
and artificial intelligence. These problems often involve vast, complex solution spaces that
challenge traditional methods like gradient-based optimization, which can struggle with is-
sues such as local optima and computational inefficiency. Metaheuristic algorithms have
emerged as powerful tools for navigating such challenges, offering flexibility and robustness
in diverse scenarios.

Ant Colony Optimization (ACO), inspired by the foraging behavior of ants, has been
particularly successful in solving combinatorial optimization problems like the Traveling
Salesman Problem (TSP) and Vehicle Routing Problem (VRP). By utilizing probabilistic
solution construction and pheromone-guided learning, ACO effectively balances exploration
and exploitation, making it adaptable to a wide range of applications. However, ACO’s
performance can be hindered by issues such as premature convergence and sensitivity to
parameter settings.

This paper explores advancements in ACO, focusing on adaptive parameter tuning,
multi-pheromone systems, and hybrid strategies to address its limitations. Five config-
urations—ranging from a baseline implementation to a hybrid model combining multiple
enhancements—are evaluated on a network routing problem using metrics such as solution
quality, convergence speed, and computational efficiency.

2 Literature Review

2.1 Overview of Metaheuristic Algorithms

Metaheuristic algorithms have emerged as powerful tools for solving complex optimization
problems across various domains. These algorithms, including Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), and Simulated Annealing (SA), are designed to explore
and exploit the solution space effectively. The adaptability and robustness of metaheuristic
algorithms make them suitable for a wide range of applications, from engineering to artificial
intelligence [5,[8]. The fundamental principle behind these algorithms is to mimic natural
processes or social behaviors, allowing them to escape local optima and converge towards
global solutions [4].

The variety of metaheuristic algorithms stems from their ability to handle different types
of optimization problems, including continuous, discrete, and combinatorial optimization
[7]. Each algorithm has its unique mechanisms for searching the solution space, which can
include population-based strategies, local search techniques, and hybrid approaches that
combine multiple methods [3]. The effectiveness of these algorithms often hinges on their
parameter settings, which can significantly influence their performance [6]. Consequently,
researchers have focused on developing adaptive mechanisms that allow these parameters to
adjust dynamically based on the problem characteristics, thereby enhancing the algorithms’
efficiency and robustness [2].

2.2 Ant Colony Optimization in Network and Routing Problems

Ant Colony Optimization (ACO) is a prominent metaheuristic inspired by the foraging be-
havior of ants, particularly their ability to find the shortest paths to food sources. This
algorithm has been successfully applied to various network and routing problems, includ-
ing the Traveling Salesman Problem (TSP) and vehicle routing problems [1]. Foundational
works by Dorigo et al. have established ACO’s utility in finding near-optimal solutions,
demonstrating its effectiveness in scenarios characterized by dynamic and complex environ-
ments [8].

The strength of ACO lies in its use of pheromone trails, which guide the search process
by reinforcing paths that yield better solutions. This collective behavior mimics the nat-
ural process of pheromone deposition and evaporation, allowing the algorithm to balance
exploration and exploitation effectively [1]. ACO has been shown to outperform traditional
optimization methods in various applications, particularly in telecommunications and logis-
tics, where routing efficiency is critical [1]. The adaptability of ACO to different problem
domains makes it a versatile tool in the optimization landscape [7].

2.3 Optimizations in ACO
2.3.1 Pheromone Update Techniques

One of the critical areas of research in ACO is the development of pheromone update tech-
niques, which are essential for enhancing the algorithm’s performance. Techniques such as
adaptive evaporation rates have been proposed to improve the balance between exploration
and exploitation [1]. By dynamically adjusting the pheromone levels based on the quality
of solutions found, these methods can prevent premature convergence and encourage the
exploration of new paths [1].

2.3.2 Parameter Adaptation in Metaheuristics

Parameter adaptation is another significant aspect of optimizing ACO. The influence of
parameters such as alpha (which controls the pheromone importance) and beta (which con-
trols the heuristic information importance) is crucial in determining the convergence rate
of the algorithm [3]. Adaptive mechanisms that adjust these parameters in real-time based
on the search progress have shown promising results in improving the overall efficiency of
ACO [8]. Such adaptations allow the algorithm to respond to the changing landscape of the
optimization problem, thereby enhancing its robustness and effectiveness [4].

2.4 Multi-Pheromone Approaches

The introduction of multi-pheromone systems in ACO has further advanced its capabilities
in solving complex optimization problems. By employing multiple pheromone types, these
approaches can enhance the diversity of solutions generated by the algorithm [1]. Multi-
pheromone strategies allow for the simultaneous exploration of different solution paths, which
can lead to improved solution quality and convergence speed |[2].

Research has demonstrated that multi-pheromone systems can significantly outperform
traditional single-pheromone ACO in various applications, particularly in scenarios where
the solution space is highly complex and multi-modal [2]. The ability to maintain multi-
ple pheromone trails enables the algorithm to explore various regions of the solution space
concurrently, thus increasing the likelihood of finding optimal or near-optimal solutions [1].
This approach has been particularly beneficial in routing problems, where diverse solution
paths can lead to more efficient network configurations [§].

2.5 Hybrid Optimization Strategies

Hybrid optimization strategies that combine ACO with other algorithms or enhancements
have shown significant improvements in complex routing scenarios. By integrating ACO
with techniques such as Genetic Algorithms or Particle Swarm Optimization, researchers
have developed hybrid models that leverage the strengths of each method [3]. These hybrid
approaches can enhance the exploration capabilities of ACO while maintaining its effective
exploitation of promising solutions [5].

For instance, combining ACO with PSO can lead to a more robust search process, where
the swarm intelligence of PSO complements the pheromone-based guidance of ACO [5]. Such
hybrid models have been successfully applied to various optimization problems, including
job scheduling, resource allocation, and network design, demonstrating their versatility and
effectiveness [7]. The adaptability of these hybrid strategies allows them to tackle a wide
range of optimization challenges, making them a valuable addition to the metaheuristic
toolkit [6].

In conclusion, the field of metaheuristic algorithms, particularly ACO, has seen signifi-
cant advancements in recent years. The continuous exploration of optimization techniques,
parameter adaptations, and hybrid strategies has contributed to the development of more
efficient and robust algorithms capable of addressing complex real-world problems. As re-
search progresses, the integration of adaptive mechanisms and multi-pheromone approaches
will likely play a crucial role in enhancing the performance of ACO and other metaheuristic
algorithms.

3 Methodology

3.1 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a probabilistic metaheuristic algorithm inspired by the
foraging behavior of real ants. This technique is particularly effective for solving combinato-
rial optimization problems such as the Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP), and others. The algorithm mimics how ants deposit pheromones on paths
while searching for food, which helps them collectively discover and reinforce the shortest
paths between their nest and food sources.

In ACO, artificial ants are used to iteratively build candidate solutions to a given problem
by moving through a graph representation of the problem. Each ant probabilistically chooses
the next node to visit based on a combination of pheromone levels and heuristic information

associated with the edges of the graph. The probability of an ant transitioning from node ¢
to node j is determined by the following equation:
pP. = (Tij)a(nzj)ﬁ
> ken, (Tie)* (mix)?

where:
e P;; is the probability of an ant moving from node 4 to node j.

e 7;; is the pheromone level on the edge (7, 7). This represents the collective memory of
previous solutions that have traversed this edge.

e 7);; is the experienced information for the edge (i, j), often defined as n;; = 1/d,;, where
d;; is the distance or cost associated with traveling between nodes 7 and j.

e « is a parameter controlling the influence of the pheromone trail. Higher « values give
more weight to pheromone levels in determining path probabilities.

e [is a parameter controlling the influence of heuristic information. Higher £ values
emphasize the heuristic desirability of edges.

e N, is the set of all feasible nodes that an ant can move to from node 7, ensuring that
constraints like visiting each node only once are respected.

The Ant Colony Optimization (ACO) algorithm operates through the following main
steps: initialization, solution construction, pheromone update, solution refinement, and the
application of stopping criteria. These steps, inspired by the foraging behavior of real ants,
form the foundation of a robust method for solving complex optimization problems.

In the initialization phase, the algorithm begins by setting the pheromone levels 7;;
on all edges to a small positive value, typically denoted as 75. This initialization ensures
that all edges are initially considered feasible, promoting an unbiased exploration of the
solution space and preventing premature convergence to suboptimal paths. Additionally,
critical algorithm parameters are set during this phase, including the number of ants (m),
the maximum number of iterations, the relative influence of pheromones («) and heuristic
information (), the pheromone evaporation rate (p), and the pheromone deposit factor (Q).
These parameters play a pivotal role in balancing the exploration of new solutions and the
exploitation of known high-quality solutions, directly impacting the algorithm’s efficiency
and effectiveness.

The solution construction phase involves each ant independently building a candidate
solution by traversing the problem’s graph. Each ant begins its journey at a randomly
selected node or a predefined starting point. At each step, the ant chooses the next node to
visit based on a probabilistic transition rule, where the probability of selecting a specific edge
is influenced by the pheromone level on that edge and the associated heuristic information.
This probabilistic approach introduces diversity in the solutions generated by different ants
while guiding the search process toward promising regions of the solution space.

Once all ants have constructed their solutions, the algorithm proceeds to the pheromone
update phase. This phase consists of two key processes: pheromone evaporation and pheromone

deposition. During pheromone evaporation, a fraction of the pheromone on each edge
evaporates, reducing its influence over time. This process, controlled by the evaporation rate
p, is described by the equation 7;; <= (1 — p)7;, where 0 < p < 1. Evaporation serves as
a critical mechanism for avoiding premature convergence by preventing the overemphasis of
heavily traversed edges, thereby encouraging exploration of alternative paths.

In the pheromone deposition process, ants reinforce the edges they have traversed by
depositing pheromone in amounts proportional to the quality of their solutions. For an ant
k with a solution cost Ly, the amount of pheromone deposited on an edge (i,) is given by:

i L%, if ant k used edge (1, j),
0, otherwise.

The total pheromone level on each edge is updated by summing the contributions from
all ants, as expressed by

m
Tij < Tij + Z ATZ;
k=1

This positive feedback mechanism amplifies the pheromone levels on edges associated with
high-quality solutions, effectively guiding subsequent ants toward these promising paths.

As the algorithm iterates, the concentration of pheromone trails on certain edges leads to
a convergence of solutions. However, to prevent stagnation, where all ants follow the same
path prematurely, additional exploration mechanisms may be employed. These mechanisms
include introducing random noise or biases to encourage ants to explore less-traveled paths,
thereby maintaining diversity in the solution space.

The ACO algorithm terminates when one of the predefined stopping criteria is met.
These criteria may include reaching a maximum number of iterations, achieving a solution
of satisfactory quality, or observing stabilization in the quality of solutions over several it-
erations. By balancing the processes of exploration and exploitation through its iterative
design, the ACO algorithm efficiently identifies high-quality solutions to complex optimiza-
tion problems, demonstrating its adaptability and robustness in various applications.

Overall, the ACO has three key features. Firstly, positive pheromone reinforcement
ensures that better solutions receive more emphasis over time. It also distributes the com-
putation through the use of multiple ants, which reduces the likelihood of getting stuck in
local optima. The combination of heuristic desirability and stochastic exploration through
pheromone trails balances exploration and exploitation of the solution space. Ant Colony
Optimization has been successfully applied to a wide range of optimization problems and can
be extended with techniques like elitist strategies, hybrid algorithms, and dynamic parameter
tuning for improved performance.

3.2 Optimizations Implemented
3.2.1 Standard ACO without Optimizations

The baseline ACO algorithm was implemented as a reference to evaluate the effectiveness of
the proposed optimizations. In this standard implementation, pheromone trails are updated

using a fixed evaporation rate and constant pheromone deposition.

3.2.2 ACO with Optimizations

To improve the convergence speed and solution quality, we introduced two optimizations.
First, the pheromone update rules were modified to emphasize shorter paths by increasing
the pheromone deposition inversely proportional to the path length.
Secondly, the pheromone evaporation rate was adapted dynamically based on the pheromone
entropy. Lower entropy led to increased evaporation to encourage exploration, while higher
entropy led to decreased evaporation to exploit promising regions.

3.2.3 Adaptive Multi-Pheromone System

In the adaptive multi-pheromone system, multiple pheromone trails were used to maintain
solution diversity.

Specifically we used primary and secondary pheromone levels so that each edge in the
graph had two pheromone levels. The primary pheromone focused on the standard ACO pro-
cess, while the secondary pheromone introduced additional diversity, promoting alternative
paths.

The influence of the secondary pheromone trail was regulated by pheromone weighting
to ensure a balance between exploration and exploitation.

3.2.4 Dynamic Alpha-Beta Parameters

For the fourth variation, the parameters a and § were adjusted dynamically during the
simulation. Initially, higher exploration was encouraged with a higher 5 value. As iterations
progressed, the values of o and [were adjusted based on two criteria.

If solution or path quality improved, o was increased to emphasize pheromone influence,
while [was decreased to reduce the reliance on heuristic information.

Additionally, the entropy of pheromone levels was monitored. Higher entropy led to
higher a to focus on exploiting known good paths, while lower entropy encouraged more
exploration by adjusting f3.

3.2.5 Hybrid Implementation

The hybrid approach combined multiple of the above optimization strategies to further
improve the performance of ACO. First, both adaptive multi-pheromone and dynamic alpha-
beta parameter strategies were combined to enhance solution diversity and convergence.

Additionally, a local search heuristic was applied to refine the solutions found by ants.
This involved reversing segments of the path to potentially reduce the total path length,
especially in later iterations where promising solutions were identified.

4 Experimental Setup

4.1 Dataset and Simulation Environment

The problem considered in this study involves a network routing scenario with 50 nodes,
represented as a graph where nodes correspond to network devices, and edges represent com-
munication links. The graph structure was designed to reflect realistic routing challenges,
including varying edge weights to simulate different communication costs (e.g., latency, band-
width, or distance).

To ensure the simulation environment closely resembles practical scenarios, we gener-
ated a network graph using a random geometric graph model, ensuring nodes are spatially
distributed, and edges are defined based on proximity and weighted by communication cost.

The edge weights were assigned based on a uniform distribution to mimic diverse routing
costs. For the ACO, the initial pheromone levels, heuristic weight (a), pheromone weight (),
evaporation rate (p), and total number of ants were carefully tuned for optimal performance.

Each experiment was run with 10 ants, 1000 iterations, and on 10 different graph ar-
rangements, to account for the stochastic nature of the algorithm and ensure statistically
significant results.

The experiment was implemented in Python, using a simulation framework optimized
for graph-based problems. All computations were performed on an HP Envy Laptop with
AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx @ 2.10 GHz, and 8.00 GB of RAM.

4.2 Evaluation Metrics

To evaluate the performance of the different ACO algorithm variants, best path length,
convergence iterations, average path length over iterations pheromone entropy and runtime
in seconds were used to compare the implementations. Each metric was averaged over 50
independent runs to mitigate randomness and provide a reliable assessment.

The best path length is the shortest path discovered by the algorithm in each run,
representing the optimal solution for the given graph instance. It measures the quality of
the final solution produced by ACO. A smaller path length indicates better performance.

The convergence iterations is the number of iterations required for the algorithm to
converge to the best solution, where no significant improvement is observed in subsequent
iterations. It evaluates the algorithm’s efficiency in finding an optimal solution. Faster
convergence indicates better exploitation of the search space.

The average path length over iterations is the mean path length discovered by all
ants across all iterations of the algorithm. It provides insight into the algorithm’s exploration-
exploitation trade-off. Lower average path lengths indicate that most ants are converging
towards optimal or near-optimal solutions.

Pheromone entropy is measure of the diversity of pheromone levels on the edges,

defined as:
H=- Zpij log pi;
(i.5)
where p;; is the normalized pheromone level on edge (i, 7). High entropy indicates greater ex-
ploration, while low entropy suggests convergence. It tracks the balance between exploration

and exploitation during the algorithm’s execution.

The runtime is the total time taken by the algorithm to complete all iterations in each
run. it assesses the computational efficiency of the algorithm, which is critical for real-time
or large-scale applications.

5 Results

The results of the experiments are summarized in Table [IJ The performance of the five
configurations of the ACO algorithm was evaluated across five key metrics, as discussed
above. Each configuration was tested over 50 runs, and the averages of these runs are
reported in the table. The analysis of each configuration and the corresponding observations
are detailed below.

Table 1: Average Metrics for ACO Configurations

Configuration Best Path | Convergence | Avg. Path Length | Pheromone Entropy | Runtime (s)
ACO without Optimiza- 3.70 1.90 13.08 2.21 46.17
tions

ACO with Optimizations 3.50 2.20 12.09 2.10 38.93
ACO with Adaptive MPS 5.60 1.60 17.58 2.69 68.32
ACO with Adaptive MPS 3.70 1.60 9.30 2.05 36.41
and Dynamic Alpha-Beta

ACO with Hybrid Imple- 3.20 0.50 9.95 1.55 34.00
mentation

5.1 Baseline: ACO Without Optimizations

The baseline implementation of ACO served as the control configuration, achieving an av-
erage best path length of 3.70 and requiring 1.90 iterations to converge. The average path
length over iterations was 13.08, with a pheromone entropy of 2.21. However, the runtime
was relatively high, averaging 46.17 seconds. These results indicate that while the baseline
configuration provided reasonable path quality, it was less efficient compared to other con-
figurations, particularly in terms of runtime. The routing graph of this implementation can
be seen in Figure [I}

5.2 ACO with Optimizations

Incorporating optimizations into the ACO algorithm led to noticeable improvements across
most metrics. The best path length improved slightly to 3.50, indicating marginally bet-
ter solution quality. The average path length over iterations reduced to 12.09, reflecting
enhanced exploration-exploitation dynamics. Despite requiring more convergence iterations
(2.20 compared to 1.90 in the baseline), the overall runtime decreased significantly to 38.93
seconds. This suggests that the optimizations improved computational efficiency while main-
taining solution quality, as seen in the reduction of used edges in Figure [2

5.3 ACO with Adaptive Multi-Pheromone System (MPS)

The adaptive multi-pheromone system configuration exhibited a notable increase in the best
path length to 5.60 and an average path length of 17.58. This indicates that the configuration
struggled to maintain solution quality compared to other implementations. Additionally, the
runtime increased significantly to 68.32 seconds, the highest among all configurations. The
high pheromone entropy of 2.69, however, reflects greater exploration during the search
process. While the adaptive MPS improved diversity in pheromone distribution, it came at
the cost of both efficiency and solution quality, compare Figure [3|as well.

5.4 ACO with Adaptive MPS and Dynamic Alpha-Beta

Adding dynamic adjustment of the o and J parameters to the adaptive MPS configuration
resulted in substantial improvements. The best path length returned to 3.70, matching the
baseline. The average path length was reduced significantly to 9.30, and the pheromone
entropy decreased to 2.05, indicating more focused convergence. Additionally, the runtime
decreased to 36.41 seconds, suggesting that the dynamic parameter adjustment improved
the efficiency of the adaptive system, see Figure

5.5 ACO with Hybrid Implementation

The hybrid implementation achieved the best overall results across all metrics. The best
path length improved to 3.20, the lowest (best) among all configurations, indicating superior
solution quality. The average path length was reduced to 9.95, reflecting consistent opti-
mization throughout iterations. This configuration also converged in just 0.50 iterations on
average, the fastest among all configurations, indicating highly efficient exploitation. More-
over, the runtime was the lowest, at 34.00 seconds, and the pheromone entropy of 1.55
reflects a balanced approach to exploration and exploitation. These results highlight the
hybrid implementation as the most effective and efficient configuration, also compare the
routing graph in Figure [5

5.6 Comparison of Configurations

Among all configurations above, the hybrid implementation consistently outperformed all
other methods across most categories, achieving the best solution quality with a best path
length of 3.20, the fastest convergence at just 0.50 iterations on average, and the lowest
runtime of 34.00 seconds. These results highlight its ability to efficiently exploit high-quality
solutions while minimizing computational overhead.

The optimized ACO configuration demonstrated a clear improvement over the base-
line, offering reduced runtime and slightly better path quality. In contrast, the adaptive
multi-pheromone system (MPS) increased exploration, as reflected by the higher pheromone
entropy, but this came at the cost of decreased solution quality and efficiency. Introducing
dynamic alpha-beta parameters to the adaptive MPS addressed many of these issues by im-
proving the balance between exploration and exploitation, leading to reduced average path
lengths, faster convergence, and lower runtime compared to the standalone adaptive MPS.

10

These findings demonstrate the trade-offs inherent in different configurations. While
baseline ACO and simpler optimizations may be sufficient for smaller problems or less dy-
namic environments, advanced methods such as hybrid implementations are better suited
for achieving both efficiency and high-quality solutions in complex scenarios.

6 Discussion

The inclusion of multi-pheromone systems and dynamic adjustment of alpha-beta parameters
had significant implications for the performance of the algorithm. Multi-pheromone systems
allowed for greater exploration of the solution space by maintaining diversity in pheromone
levels, which helped mitigate premature convergence to suboptimal solutions. However,
without proper balancing, this increased diversity often led to inefficiency and poorer solution
quality, as seen in the standalone adaptive MPS configuration.

Dynamic alpha-beta parameters, on the other hand, enabled the algorithm to adapt its
search strategy over time, transitioning smoothly between exploration in the early stages and
exploitation in later stages. This adaptation was particularly effective when combined with
the multi-pheromone approach, as it allowed the algorithm to use the benefits of diversity
while maintaining focus on high-quality solutions. The hybrid implementation leveraged
both of these strategies, achieving the best balance and, consequently, the highest perfor-
mance across all metrics.

Despite the promising results, the current implementation has several limitations. First,
computational constraints restricted the experiments to graphs with a maximum of 50 nodes,
leaving the scalability of the proposed methods untested on larger and more complex net-
works. Additionally, the stochastic nature of the algorithm introduces variability in perfor-
mance, which may require fine-tuning of parameters for different problem instances. Finally,
while the proposed enhancements improved performance significantly, their real-world appli-
cability would benefit from further validation in dynamic and uncertain environments, such
as traffic systems or telecommunications networks.

7 Conclusion

This paper presented a comprehensive evaluation of several enhancements to the classical
Ant Colony Optimization (ACO) algorithm, including adaptive multi-pheromone systems,
dynamic alpha-beta parameter adjustment, and a hybrid approach that combined these
strategies. The baseline ACO provided a reasonable performance benchmark but was outper-
formed in terms of both runtime and solution quality by configurations with optimizations.
The standalone multi-pheromone system demonstrated increased exploration but suffered
from inefficiency and reduced solution quality. Dynamic alpha-beta parameters significantly
improved the balance between exploration and exploitation, particularly when integrated
with the multi-pheromone system.

The hybrid implementation emerged as the most effective configuration, achieving supe-
rior solution quality with the best path length of 3.20, fastest convergence at 0.50 iterations,
and lowest runtime of 34.00 seconds. These results highlight the potential of hybrid strategies
to address the inherent trade-offs in ACO by leveraging the strengths of multiple approaches.

11

Future research could focus on further hybridizing ACO with other optimization algo-
rithms, such as genetic algorithms or particle swarm optimization, to explore synergies and
enhance performance further. Additionally, extending these methods to larger and more com-
plex graphs would provide valuable insights into their scalability and robustness. Another
promising direction is the application of these techniques to dynamic and real-time problems,
such as adaptive traffic routing, wireless network optimization, and logistics systems under
uncertain conditions. Developing more efficient implementations to reduce computational
overhead in high-dimensional scenarios would also be a critical area for exploration.

The proposed optimizations to ACO have significant practical implications. By im-
proving both solution quality and computational efficiency, these methods are well-suited
for real-world applications in areas such as traffic routing, where minimizing travel time
and congestion is critical; telecommunications, where efficient network routing can enhance
bandwidth utilization and reduce latency; and logistics, where optimizing delivery routes can
lead to substantial cost savings. Moreover, the ability to adaptively balance exploration and
exploitation makes these methods particularly relevant for dynamic environments, ensuring
their applicability across a wide range of industries.

12

References

1]

A. Afia, S. Bouzbita, and R. Faizi, "The effect of updating the local pheromone on
ACS performance using fuzzy logic,” International Journal of Electrical and Computer
Engineering (IJECE), vol. 7, no. 4, p. 2161, 2017. https://doi.org/10.11591/1ijece.
v7i4 . pp2161-2168

E. Bernal, O. Castillo, J. Soria, and F. Valdez, ”Fuzzy galactic swarm optimization with
dynamic adjustment of parameters based on fuzzy logic,” SN Computer Science, vol. 1,
no. 1, 2020. https://doi.org/10.1007/s42979-020-0062-4

S. Chen, A. Bolufé-Rohler, J. Montgomery, and T. Hendtlass, ” An analysis on the effect
of selection on exploration in particle swarm optimization and differential evolution,” in
Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 3037—
3044, 2019. https://doi.org/10.1109/cec.2019.8790200

A. Eiben and S. Smit, ”Parameter tuning for configuring and analyzing evolutionary
algorithms,” Swarm and Fvolutionary Computation, vol. 1, no. 1, pp. 19-31, 2011.
https://doi.org/10.1016/j.swevo.2011.02.001

S. Mirjalili, S. Mirjalili, and A. Lewis, ” Grey wolf optimizer,” Advances in Engineering
Software, vol. 69, pp. 46-61, 2014. https://doi.org/10.1016/j.advengsoft.2013.
12.007

M. Tessari and G. Iacca, ”"Reinforcement learning based adaptive metaheuristics,” in
Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion,
pp. 18541861, 2022. https://doi.org/10.1145/3520304 . 3533983

M. Ulukok, ”Bi-attempted based optimization algorithm for numerical optimization
problems,” European Journal of Science and Technology, 2021. https://doi.org/10.
31590/ejosat .953349

J. Xu and L. Xu, ”Optimal stochastic process optimizer: a new metaheuristic algorithm
with adaptive exploration-exploitation property,” IEEE Access, vol. 9, pp. 108640—
108664, 2021. https://doi.org/10.1109/access.2021.3101939

13

https://doi.org/10.11591/ijece.v7i4.pp2161-2168
https://doi.org/10.11591/ijece.v7i4.pp2161-2168
https://doi.org/10.1007/s42979-020-0062-4
https://doi.org/10.1109/cec.2019.8790200
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1145/3520304.3533983
https://doi.org/10.31590/ejosat.953349
https://doi.org/10.31590/ejosat.953349
https://doi.org/10.1109/access.2021.3101939

Appendices

Figures

ACO Routing without Optimizations

Start Node
End Node

Figure 1: ACO Routing without Optimizations

14

1.0

0.8

0.6

- 0.4

0.2

0.0

Pheromone Intensity

ACO Routing with Optimizations

Start Node
End Node

Figure 2: ACO Routing with Optimizations

15

1.0

0.8

0.6

- 0.4

0.2

0.0

Pheromone Intensity

ACO Routing with Adaptive Multi-Pheromone System

1.0

Start Node
End Node

0.8

0.6

- 0.4

0.2

0.0

Figure 3: ACO Routing with Adaptive Multi-Pheromone System

16

Pheromone Intensity

ACO Routing with Adaptive Multi-Pheromone System and Dynamic Alpha-Beta

Start Node
End Node

1.0

47
16

29

31 u 0.8

0.6

Pheromone Intensity

- 0.4

0.2

0.0

Figure 4: ACO Routing with Adaptive Multi-Pheromone System and Dynamic Alpha-Beta

17

ACO Routing with Hybrid Implementation

Start Node
End Node
47

16

29 17

31

1.0

0.8

0.6

- 0.4

0.2

Figure 5: ACO Routing with Hybrid Implementation

18

0.0

Pheromone Intensity

Code

The following Python code contains the implementation of the Ant Colony Optimization
(ACO) simulation used for the experiments described in this work.

import
import
import
import

networkx as nx

numpy as np

random

matplotlib.pyplot as plt

from copy import deepcopy

import
import

math
time

def run_aco_simulation(G, pheromone_levels, num_ants, iterations, source,
sink, adaptive_evaporation=False, apply_local_search=False,
multi_pheromone=False, secondary_pheromone_levels=None):
Parameters for ACO
Initial values for alpha and beta

alpha = 1.0 # Pheromone influence
beta = 2.0 # Distance influence
evaporation_rate = 0.5 # Initial evaporation rate

def choose_next_node (current_node, visited):

neighbors = 1list(G.neighbors (current_node))
probabilities = []
for neighbor in neighbors:

if neighbor not in visited:

edge = (min(current_node, neighbor), max(current_node,
neighbor))

pheromone = pheromone_levels [edge]

distance = np.linalg.norm(np.array(G.nodes[current_node]l[’

pos’]) - np.array(G.nodes[neighbor][’pos’]1))

prob = (pheromone ** alpha) * ((1.0 / distance) ** beta)

if multi_pheromone and secondary_pheromone_levels:
secondary_pheromone = secondary_pheromone_levels [edge]
prob *= (secondary_pheromone ** 0.5) # Weight

secondary pheromone

probabilities.append (prob)
else:
probabilities.append (0.0)

total_prob = sum(probabilities)
if total_prob == 0

return random.choice(neighbors) # Random fallback
probabilities = [p / total_prob for p in probabilities]
return random.choices (neighbors, probabilities) [0]

def local_search(path):

Local search strategy: reverse a segment of the path to see if

it improves quality

if len(path) > 3:
new_path = deepcopy(path)
i, j = sorted(random.sample(range(l, len(path) - 1), 2))
new_path[i:j] = reversed(new_path[i:j])

19

60

61

62

63

64

65

66

return new_path
return path

best_path = None
best_path_length = float(’inf’)
convergence_iteration = None
all_path_lengths = []

start_time = time.time ()

for i in range(iterations):
Calculate pheromone entropy before adjusting parameters

pheromone_values = np.array(list(pheromone_levels.values()))

pheromone_probabilities = pheromone_values / pheromone_values.sunm
O

pheromone_entropy = -np.sum(pheromone_probabilities * np.log(

pheromone_probabilities + 1e-9)) # Small epsilon to avoid log(0)
Adjust alpha and beta dynamically based on previous success and
pheromone entropy
if i > 0 and len(all_path_lengths) > 1:
if all_path_lengths[-1] < all_path_lengths[-2]:
If the average path length improved, increase
exploitation
alpha = min(3.0, alpha + 0.05) # Cap alpha to avoid over-
exploitation
beta = max(1.0, beta - 0.05) # Decrease beta to reduce
exploration
else:
If the average path length did not improve, increase
exploration
alpha = max(1.0, alpha - 0.05)
beta = min(3.0, beta + 0.05) # Cap beta to avoid over-
exploration
Adjust parameters based on pheromone entropy
if pheromone_entropy < 1.5:
Low entropy: increase exploration
alpha = max(1.0, alpha - 0.05)
beta = min(3.0, beta + 0.05)
elif pheromone_entropy > 2.5:
High entropy: increase exploitation
alpha = min(3.0, alpha + 0.05)
beta = max(1.0, beta - 0.05)

all_paths = []
total_path_length = 0
for ant in range(num_ants):
current_node = source
visited = [current_node]
while current_node != sink:
next_node = choose_next_node(current_node, visited)
visited.append(next_node)
current_node = next_node
if apply_local_search:

20

90

102
103

104

105

106

visited = local_search(visited) # Apply local search if
enabled
all_paths.append(visited)
total_path_length += len(visited)

Update best path

if len(visited) < best_path_length:
best_path = visited
best_path_length = len(visited)
convergence_iteration = i

all_path_lengths.append(total_path_length / num_ants) # Average
path length for this iteration

Adjust evaporation rate dynamically
if adaptive_evaporation:
if pheromone_entropy > 2.5:
evaporation_rate = max (0.3, evaporation_rate - 0.01) #
Decrease evaporation to retain pheromone longer
elif pheromone_entropy < 1.5:
evaporation_rate = min(0.7, evaporation_rate + 0.01) #
Increase evaporation to promote exploration # Gradually increase
evaporation

Evaporate pheromone
for edge in pheromone_levels:
pheromone_levels [edge] *= (1 - evaporation_rate)
if multi_pheromone and secondary_pheromone_levels:
secondary_pheromone_levels [edge] *= (1 - evaporation_rate)

Update pheromones based on path quality
for path in all_paths:
for j in range(len(path) - 1):
edge = (min(path([j], path[j + 1]), max(path[j + 1], path[j
1))
pheromone_levels[edge] += 1.0 / len(path) # Shorter paths
get more pheromone
if multi_pheromone and secondary_pheromone_levels:
secondary_pheromone_levels[edge] += 0.5 / len(path) #
Update secondary pheromone

end_time = time.time ()
runtime = end_time - start_time

Small epsilon to avoid log(0)

Output metrics
return {

"best_path_length": best_path_length,
"convergence_iteration": convergence_iteration if
convergence_iteration is not None else "Did not converge",
"average_path_length": np.mean(all_path_lengths),
"pheromone_entropy": pheromone_entropy,

"runtime": runtime

21

158

164

165

166

167

168

169

170

Step 1: Run the simulations on multiple graphs

7 num_graphs = 10
s num_nodes = 50

radius = 15
results_without_optimizations = []
results_with_optimizations = []

> results_multi_pheromone = []

for i in range(num_graphs):
print (£"\nRunning simulations on graph {i + 1}/{num_graphs}...")
G = nx.random_geometric_graph(num_nodes, radius, dim=2)
pos = nx.spring_layout (G, seed=42)

Run ACO without optimizations

print ("Running ACO without optimizations...")

pheromone_levels_initial = {edge: 1 for edge in G.edges} # Initialize
pheromone levels

result = run_aco_simulation (G, pheromone_levels_initial, num_ants=10,
iterations=1000, source=0, sink=num_nodes - 1)

results_without_optimizations.append(result)

Run ACO with optimizations

print ("Running ACO with optimizations...")
pheromone_levels_optimized = {edge: 1 for edge in G.edges} #
Reinitialize pheromone levels

result = run_aco_simulation(G, pheromone_levels_optimized, num_ants
=10, iterations=1000, source=0, sink=num_nodes - 1,
adaptive_evaporation=True, apply_local_search=True)
results_with_optimizations.append(result)

Run ACO with adaptive multi-pheromone system

print ("Running ACO with adaptive multi-pheromone system...")
primary_pheromone_levels = {edge: 1 for edge in G.edges} # Primary
pheromone levels

secondary_pheromone_levels = {edge: 1 for edge in G.edges} #
Secondary pheromone levels

result = run_aco_simulation(G, primary_pheromone_levels, num_ants=10,
iterations=1000, source=0, sink=num_nodes - 1, multi_pheromone=True,

secondary_pheromone_levels=secondary_pheromone_levels)
results_multi_pheromone.append(result)

Run ACO with adaptive multi-pheromone system and dynamic alpha-beta
print ("Running ACO with adaptive multi-pheromone system and dynamic

alpha-beta...")

primary_pheromone_levels_dynamic = {edge: 1 for edge in G.edgesl} #
Primary pheromone levels

secondary_pheromone_levels_dynamic = {edge: 1 for edge in G.edgesl} #
Secondary pheromone levels

result = run_aco_simulation(G, primary_pheromone_levels_dynamic,
num_ants=10, iterations=1000, source=0, sink=num_nodes - 1,

multi_pheromone=True, secondary_pheromone_levels=
secondary_pheromone_levels_dynamic)

22

179

186

189
190
191
192
193
194
195
196

197

198

199

200

201

206

results_multi_pheromone.append(result)

Run ACO with hybrid implementation

print ("Running ACO with hybrid implementation...")
hybrid_pheromone_levels = {edge: 1 for edge in G.edges} # Hybrid
pheromone levels

hybrid_secondary_pheromone_levels = {edge: 1 for edge in G.edgesl} #
Secondary pheromone levels

result = run_aco_simulation(G, hybrid_pheromone_levels, num_ants=10,
iterations=1000, source=0, sink=num_nodes - 1, adaptive_evaporation=
True, apply_local_search=True, multi_pheromone=True,
secondary_pheromone_levels=hybrid_secondary_pheromone_levels)
results_multi_pheromone.append(result)

2 # Step 2: Calculate average metrics for each implementation

def calculate_average_metrics(results):
avg_best_path_length = np.mean([r["best_path_length"] for r in results
D)
avg_convergence_iteration = np.mean([r["convergence_iteration"] if
isinstance(r["convergence_iteration"], int) else iterations for r in
results])
avg_average_path_length
results])

np.mean([r["average_path_length"] for r in

avg_pheromone_entropy = np.mean([r["pheromone_entropy"] for r in
results])
avg_runtime = np.mean([r["runtime"] for r in results])

return {
"avg_best_path_length": avg_best_path_length,
"avg_convergence_iteration": avg_convergence_iteration,
"avg_average_path_length": avg_average_path_length,
"avg_pheromone_entropy": avg_pheromone_entropy,
"avg_runtime": avg_runtime

average_metrics_without_optimizations = calculate_average_metrics(
results_without_optimizations)

average_metrics_with_optimizations = calculate_average_metrics(
results_with_optimizations)

average_metrics_multi_pheromone = calculate_average_metrics(
results_multi_pheromone [:num_graphs])

average_metrics_multi_pheromone_dynamic = calculate_average_metrics/(
results_multi_pheromone [num_graphs:num_graphs*2])

average_metrics_hybrid = calculate_average_metrics(results_multi_pheromone
[num_graphs*2:])

Step 3: Print average metrics
print ("\nAverage Metrics for ACO without Optimizations:")

205 print (f" - Average Best Path Length: {
average_metrics_without_optimizations[’avg_best_path_length’]:.2f}")
print (f" - Average Convergence Iteration: {
average_metrics_without_optimizations[’avg_convergence_iteration’]:.2f}
")
print (f" - Average Path Length Over Iterations: {

average_metrics_without_optimizations[’avg_average_path_length’]:.2f}")

23

208

209

210

212

213

215

216

print (f" - Average Pheromone Entropy: {
average_metrics_without_optimizations[’avg_pheromone_entropy’]:.2f}")

print (f" - Average Runtime (seconds): {
average_metrics_without_optimizations[’avg_runtime’]:.2f}")

print ("\nAverage Metrics for ACO with Optimizations:")

print (f" - Average Best Path Length: {average _metrics_with_optimizations
[’avg_best_path_length’]:.2f}")

print (f" - Average Convergence Iteration: {
average_metrics_with_optimizations[’avg_convergence_iteration’]:.2f}")

214 print (f" - Average Path Length Over Iterations: {

average_metrics_with_optimizations[’avg_average_path_length’]:.2f}")

print (f" - Average Pheromone Entropy: {average_metrics_with_optimizations
[’avg_pheromone_entropy’]:.2f}")

print (f" - Average Runtime (seconds): {average_metrics_with_optimizations
[avg_runtime’]:.2f}")

s print ("\nAverage Metrics for ACO with Adaptive Multi-Pheromone System:")

220

222

226

229

print (f" - Average Best Path Length: {average_metrics_multi_pheromonel[’
avg_best_path_length’]:.2f}")

print (f" - Average Convergence Iteration: {
average_metrics_multi_pheromone[’avg_convergence_iteration’]:.2f}")

print (f" - Average Path Length Over Iterations: {
average_metrics_multi_pheromone[’avg_average_path_length’]:.2f}")

print (f" - Average Pheromone Entropy: {average_metrics_multi_pheromonel[’
avg_pheromone_entropy’]:.2f}")

print (£f" - Average Runtime (seconds): {average_metrics_multi_pheromonel[’

avg_runtime’]:.2f}")

5 print ("\nAverage Metrics for ACO with Adaptive Multi-Pheromone System and

Dynamic Alpha-Beta:")
print (f" - Average Best Path Length: {
average_metrics_multi_pheromone_dynamic[’avg_best_path_length’]:.2f}")

- print (f" - Average Convergence Iteration: {

average_metrics_multi_pheromone_dynamic[’avg_convergence_iteration’]:.2

f}")

228 print (£" - Average Path Length Over Iterations: {
average_metrics_multi_pheromone_dynamic[’avg_average_path_length’]:.2f}
Il)
print (f" - Average Pheromone Entropy: {
average_metrics_multi_pheromone_dynamic[’avg_pheromone_entropy’]:.2f}")
print (f" - Average Runtime (seconds): {

230

236

average_metrics_multi_pheromone_dynamic[’avg_runtime’]:.2f}")

2 print ("\nAverage Metrics for ACO with Hybrid Implementation:")

3 print (f" - Average Best Path Length: {average_metrics_hybrid[’
avg_best_path_length’]:.2f}")
print (f" - Average Convergence Iteration: {average_metrics_hybrid[’
avg_convergence_iteration’]:.2f}")
print (f" - Average Path Length Over Iterations: {average_metrics_hybridl[’
avg_average_path_length’]:.2f}")
print (f" - Average Pheromone Entropy: {average_metrics_hybrid[’

avg_pheromone_entropy’]:.2f}")

24

237 print (£" - Average Runtime (seconds): {average_metrics_hybrid[’
avg_runtime’]:.2f}")

Listing 1: ACO Simulation Implementation

25

	Introduction
	Literature Review
	Overview of Metaheuristic Algorithms
	Ant Colony Optimization in Network and Routing Problems
	Optimizations in ACO
	Pheromone Update Techniques
	Parameter Adaptation in Metaheuristics

	Multi-Pheromone Approaches
	Hybrid Optimization Strategies

	Methodology
	Ant Colony Optimization (ACO)
	Optimizations Implemented
	Standard ACO without Optimizations
	ACO with Optimizations
	Adaptive Multi-Pheromone System
	Dynamic Alpha-Beta Parameters
	Hybrid Implementation

	Experimental Setup
	Dataset and Simulation Environment
	Evaluation Metrics

	Results
	Baseline: ACO Without Optimizations
	ACO with Optimizations
	ACO with Adaptive Multi-Pheromone System (MPS)
	ACO with Adaptive MPS and Dynamic Alpha-Beta
	ACO with Hybrid Implementation
	Comparison of Configurations

	Discussion
	Conclusion

